GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Online Resource  (199)
  • MDPI AG  (199)
Material
  • Online Resource  (199)
Publisher
  • MDPI AG  (199)
Language
Years
FID
  • 1
    In: Molecules, MDPI AG, Vol. 25, No. 15 ( 2020-07-24), p. 3369-
    Abstract: The efficient treatment of the problem of air pollution is a practical issue related to human health. The development of multi-functional air treatment filters, which can remove various kinds of pollutants, including particulate matter (PM) and organic gases, is a tireless pursuit aiming to address the actual needs of humans. Advanced materials and nano-manufacturing technology have brought about the opportunity to change conventional air filters for practical demands, with the aim of achieving the high-efficiency utilization of photons, a strong catalytic ability, and the synergetic degradation of multi-pollutants. In this work, visible-responding photocatalytic air treatment filters were prepared and combined with a fast and cost-effective electrospinning process. Firstly, we synthesized Ag-loaded TiO2 nanorod composites with a controlled size and number of loaded Ag nanoparticles. Then, multi-functional air treatment filters were designed by loading catalysts on electrospinning nanofibers combined with a programmable brush. We found that such Ag-TiO2 nanorod composite-loaded nanofibers displayed prominent PM filtration (~90%) and the degradation of organic pollutants (above 90%). The superior performance of purification could be demonstrated in two aspects. One was the improvement of the adsorption of pollutants derived from the increase of the specific surface area after the loading of catalysts, and the other was the plasmonic hot carriers, which induced a broadening of the optical absorption in the visible light range, meaning that many more photons were utilized effectively. The designed air treatment filters with synergistic effects for eliminating both PM and organic pollutants have promising potential for the future design and application of novel air treatment devices.
    Type of Medium: Online Resource
    ISSN: 1420-3049
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2008644-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Agronomy, MDPI AG, Vol. 11, No. 9 ( 2021-09-16), p. 1859-
    Abstract: Limited data are available on the physiological responses of Citrus to nitrogen (N) deficiency. ‘Xuegan’ (Citrus sinensis (L.) Osbeck) and ‘Shantian pummelo’ (Citrus grandis (L.) Osbeck) seedlings were fertilized with nutrient solution at a N concentration of 0, 5, 10, 15 or 20 mM for 10 weeks. N deficiency decreased N uptake and N concentration in leaves, stems and roots and disturbed nutrient balance and homeostasis in plants, thus inhibiting plant growth, as well as reducing photosynthetic pigment levels and impairing thylakoid structure and photosynthetic electron transport chain (PETC) in leaves, hence lowering CO2 assimilation. The imbalance of nutrients intensified N deficiency’s adverse impacts on biomass, PETC, CO2 assimilation and biosynthesis of photosynthetic pigments. Citrus displayed adaptive responses to N deficiency, including (a) elevating the distributions of N and other elements in roots, as well as root dry weight (DW)/shoot DW ratio and root-surface-per-unit volume and (b) improving photosynthetic N use efficiency (PNUE). In general, N deficiency had less impact on biomass and photosynthetic pigment levels in C. grandis than in C. sinensis seedlings, demonstrating that the tolerance of C. grandis seedlings to N deficiency was slightly higher than that of C. sinensis seedlings, which might be related to the higher PNUE of the former.
    Type of Medium: Online Resource
    ISSN: 2073-4395
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2607043-1
    SSG: 23
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Molecules, MDPI AG, Vol. 27, No. 24 ( 2022-12-17), p. 9005-
    Abstract: Lung cancer is one of the 10 most common cancers in the world, which seriously affects the normal life and health of patients. According to the investigation report, the 3-year survival rate of patients with lung cancer is less than 20%. Heredity, the environment, and long-term smoking or secondhand smoke greatly promote the development and progress of the disease. The mechanisms of action of the occurrence and development of lung cancer have not been fully clarified. As a new type of gas signal molecule, hydrogen sulfide (H2S) has received great attention for its physiological and pathological roles in mammalian cells. It has been found that H2S is widely involved in the regulation of the respiratory system and digestive system, and plays an important role in the occurrence and development of lung cancer. H2S has the characteristics of dissolving in water and passing through the cell membrane, and is widely expressed in body tissues, which determines the possibility of its participation in the occurrence of lung cancer. Both endogenous and exogenous H2S may be involved in the inhibition of lung cancer cells by regulating mitochondrial energy metabolism, mitochondrial DNA integrity, and phosphoinositide 3-kinase/protein kinase B co-pathway hypoxia-inducible factor-1α (HIF-1α). This article reviews and discusses the molecular mechanism of H2S in the development of lung cancer, and provides novel insights for the prevention and targeted therapy of lung cancer.
    Type of Medium: Online Resource
    ISSN: 1420-3049
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2008644-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Molecules, MDPI AG, Vol. 27, No. 23 ( 2022-11-23), p. 8155-
    Abstract: Proteomic profiling of extracellular vesicles (EVs) represents a promising approach for early detection and therapeutic monitoring of diseases such as cancer. The focus of this study was to apply robust EV isolation and subsequent data-independent acquisition mass spectrometry (DIA-MS) for urinary EV proteomics of prostate cancer and prostate inflammation patients. Urinary EVs were isolated by functionalized magnetic beads through chemical affinity on an automatic station, and EV proteins were analyzed by integrating three library-base analyses (Direct-DIA, GPF-DIA, and Fractionated DDA-base DIA) to improve the coverage and quantitation. We assessed the levels of urinary EV-associated proteins based on 40 samples consisting of 20 cases and 20 controls, where 18 EV proteins were identified to be differentiated in prostate cancer outcome, of which three (i.e., SERPINA3, LRG1, and SCGB3A1) were shown to be consistently upregulated. We also observed 6 out of the 18 (33%) EV proteins that had been developed as drug targets, while some of them showed protein-protein interactions. Moreover, the potential mechanistic pathways of 18 significantly different EV proteins were enriched in metabolic, immune, and inflammatory activities. These results showed consistency in an independent cohort with 20 participants. Using a random forest algorithm for classification assessment, including the identified EV proteins, we found that SERPINA3, LRG1, or SCGB3A1 add predictable value in addition to age, prostate size, body mass index (BMI), and prostate-specific antigen (PSA). In summary, the current study demonstrates a translational workflow to identify EV proteins as molecular markers to improve the clinical diagnosis of prostate cancer.
    Type of Medium: Online Resource
    ISSN: 1420-3049
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2008644-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Molecules, MDPI AG, Vol. 28, No. 12 ( 2023-06-15), p. 4780-
    Abstract: Malabar spinach (Basella alba), amaranth (Amaranthus tricolor), and sweet potato (Ipomoea batatas) are leafy vegetables found in Southwest China. The variation of chlorophyll, carotenoids, ascorbic acid, total flavonoids, phenolic compounds, and antioxidant capacity was studied in the leaves and stems of the three vegetables. The content of main health-promoting compounds and the antioxidant capacity in the leaves were higher than that in the stems, indicating that the leaves of the three vegetables possess greater nutritional value. The trend of total flavonoids in all three vegetables was similar to the trend of antioxidant capacity, suggesting that the total flavonoids may be the major antioxidants wihin these vegetables. Eight individual phenolic compounds were detected in three different vegetables. The most abundant levels of individual phenolic compounds in the leaves and stems of malabar spinach, amaranth, and sweet potato were 6′-O-feruloyl-d-sucrose (9.04 and 2.03 mg g−1 DW), hydroxyferulic acid (10.14 and 0.73 mg g−1 DW), and isorhamnetin-7-O-glucoside (34.93 and 6.76 mg g−1 DW), respectively. Sweet potato exhibited a higher total and individual phenolic compound content compared to malabar spinach and amaranth. Overall, the results demonstrate that the three leafy vegetables possess high nutritional value, and could be used not only for consumption but also in various other fields, including medicine and chemistry.
    Type of Medium: Online Resource
    ISSN: 1420-3049
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2008644-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Galaxies, MDPI AG, Vol. 10, No. 6 ( 2022-12-07), p. 113-
    Abstract: The East Asian VLBI Network (EAVN) is an international VLBI facility in East Asia and is operated under mutual collaboration between East Asian countries, as well as part of Southeast Asian and European countries. EAVN currently consists of 16 radio telescopes and three correlators located in China, Japan, and Korea, and is operated mainly at three frequency bands, 6.7, 22, and 43 GHz with the longest baseline length of 5078 km, resulting in the highest angular resolution of 0.28 milliarcseconds at 43 GHz. One of distinct capabilities of EAVN is multi-frequency simultaneous data reception at nine telescopes, which enable us to employ the frequency phase transfer technique to obtain better sensitivity at higher observing frequencies. EAVN started its open-use program in the second half of 2018, providing a total observing time of more than 1100 h in a year. EAVN fills geographical gap in global VLBI array, resulting in enabling us to conduct contiguous high-resolution VLBI observations. EAVN has produced various scientific accomplishments especially in observations toward active galactic nuclei, evolved stars, and star-forming regions. These activities motivate us to initiate launch of the ’Global VLBI Alliance’ to provide an opportunity of VLBI observation with the longest baselines on the earth.
    Type of Medium: Online Resource
    ISSN: 2075-4434
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2691049-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Molecules, MDPI AG, Vol. 15, No. 4 ( 2010-03-30), p. 2319-2325
    Type of Medium: Online Resource
    ISSN: 1420-3049
    Language: English
    Publisher: MDPI AG
    Publication Date: 2010
    detail.hit.zdb_id: 2008644-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Catalysts, MDPI AG, Vol. 12, No. 12 ( 2022-12-16), p. 1658-
    Abstract: Benzimidazole scaffolds became an attractive subject due to their broad spectrum of pharmacological activities. In this work, a methodology was developed for the synthesis of N-substituted benzimidazole derivatives from benzimidazoles and α, β-unsaturated compounds (acrylonitriles, acrylate esters, phenyl vinyl sulfone) catalyzed by lipase TL IM from Thermomyces lanuginosus in continuous-flow microreactors. Investigations were conducted on reaction parameters such as solvent, substrate ratio, reaction temperature, reactant donor/acceptor structures, and reaction time. The transformation is promoted by inexpensive and readily available lipase in methanol at 45 °C for 35 min. A wide range of β-amino sulfone, β-amino nitrile, and β-amino carbonyl compounds were efficiently and selectively synthesized in high yields (76–97%). All in all, a microfluidic biocatalysis system was applied to the synthesis of N-substituted benzimidazole derivatives, and could serve as a promising fast synthesis strategy for further research to develop novel and highly potent active drugs.
    Type of Medium: Online Resource
    ISSN: 2073-4344
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2662126-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Molecules, MDPI AG, Vol. 14, No. 6 ( 2009-06-08), p. 2043-2048
    Type of Medium: Online Resource
    ISSN: 1420-3049
    Language: English
    Publisher: MDPI AG
    Publication Date: 2009
    detail.hit.zdb_id: 2008644-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Brain Sciences, MDPI AG, Vol. 12, No. 5 ( 2022-04-29), p. 585-
    Abstract: High-altitude exposure can negatively impact one’s ability to accurately perceive time. This study focuses on Chinese migrants who have traveled to the Tibetan plateau and explores the effects of high-altitude exposure on their time interval judgment abilities based on three separate studies. In Study 1, it was found that exposure to high altitudes negatively impacted the time interval judgment functions of the migrants compared with a low-altitude control group; they exhibited a prolonged response time (540 ms: p = 0.006, 95% CI (−1.70 −0.32)) and reduced accuracy (1080 ms: p = 0.032, 95% CI (0.06 1.26)) in certain behavioral tasks. In Study 2, the results showed that high-altitude exposure and sleepiness had an interactive effect on time interval judgment (1080 ms) (p 〈 0.05, 95% CI (−0.83 −0.40)). To further verify our interaction hypothesis, in Study 3, we investigated the time interval judgment of interactions between acute high-altitude exposure and sleepiness level. The results revealed that the adaptation effect disappeared and sleepiness significantly exacerbated the negative effects of high-altitude exposure on time interval judgment (p 〈 0.001, 95% CI (−0.85 −0.34)). This study is the first to examine the effects of high-altitude exposure on time interval judgment processing functions and the effects of sleep-related factors on individual time interval judgment.
    Type of Medium: Online Resource
    ISSN: 2076-3425
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2651993-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...