GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Online Resource  (272)
  • MDPI AG  (272)
Material
  • Online Resource  (272)
Publisher
  • MDPI AG  (272)
Language
Years
FID
  • 1
    In: Catalysts, MDPI AG, Vol. 10, No. 9 ( 2020-08-21), p. 960-
    Abstract: Layered double hydroxide (LDH) materials have shown charming photo-Fenton capability for the treatment of refractory organic wastewater. In this study, CuFe-LDH hybridized with N-doped carbon quantum dots (N-CQDs) was investigated to further enhance the photo-Fenton capability. The results showed that the assembly techniques of coprecipitation and the hydrothermal method could synthesize the target material, CuFe-LDH/N-CQDs, successfully. CuFe-LDH/N-CQDs could possess a 13.5% higher methylene blue (MB) removal rate than CuFe-LDH in 30 min due to the accelerated redox cycles of Fe(III)/Fe(II) and Cu(III)/Cu(II), resulting from the photo-induced electron transfer from N-CQDs to CuFe-LDH via a d–π conjugation electronic bridge. Moreover, CuFe-LDH/N-CQDs has excellent photo-Fenton capability in the pH range of 2–11, even after being reused five times. This study would provide an efficient and stable photo-Fenton catalyst for the treatment of refractory organic wastewater.
    Type of Medium: Online Resource
    ISSN: 2073-4344
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2662126-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: International Journal of Molecular Sciences, MDPI AG, Vol. 24, No. 14 ( 2023-07-11), p. 11320-
    Abstract: A water-soluble acacetin prodrug has been synthesized and reported by our group previously. Acetaminophen (APAP) overdose is a leading cause of acute liver injury. We found that subcutaneous injection of acacetin prodrug (5, 10, 20 mg/kg) decreased serum ALT, AST, and ALP, corrected the abnormal MDA and GSH in liver, and improved intrahepatic hemorrhage and destruction of liver structures in APAP (300 mg/kg)-treated mice. Molecular mechanism analysis revealed that the expressions of endoplasmic reticulum (ER) stress markers ATF6, CHOP, and p-PERK, apoptosis-related protein BAX, and cleaved caspase 3 were decreased by acacetin in a dose-dependent manner in vivo and in vitro. Moreover, via the acacetin-upregulated peroxisome-proliferator-activated receptor gamma (PPARγ) of HepG2 cells and liver, the suppressive effect of acacetin on ER stress and apoptosis was abolished by PPARγ inhibitor (GW9662) or PPARγ-siRNA. Molecular docking revealed that acacetin can bind to three active pockets of PPARγ, mainly by hydrogen bond. Our results provide novel evidence that acacetin prodrug exhibits significant protective effect against APAP-induced liver injury by targeting PPARγ, thereby suppressing ER stress and hepatocyte apoptosis. Acacetin prodrug is likely a promising new drug candidate for treating patients with acute liver injury induced by APAP.
    Type of Medium: Online Resource
    ISSN: 1422-0067
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2019364-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Sensors, MDPI AG, Vol. 23, No. 18 ( 2023-09-05), p. 7668-
    Abstract: Atmospheric drag is an important factor affecting orbit determination and prediction of low-orbit space debris. To obtain accurate ballistic coefficients of space debris, we propose a calculation method based on measured optical angles. Angle measurements of space debris with a perigee height below 1400 km acquired from a photoelectric array were used for orbit determination. Perturbation equations of atmospheric drag were used to calculate the semi-major-axis variation. The ballistic coefficients of space debris were estimated and compared with those published by the North American Aerospace Defense Command in terms of orbit prediction error. The 48 h orbit prediction error of the ballistic coefficients obtained from the proposed method is reduced by 18.65% compared with the published error. Hence, our method seems suitable for calculating space debris ballistic coefficients and supporting related practical applications.
    Type of Medium: Online Resource
    ISSN: 1424-8220
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2052857-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    MDPI AG ; 2021
    In:  Journal of Marine Science and Engineering Vol. 9, No. 11 ( 2021-11-05), p. 1224-
    In: Journal of Marine Science and Engineering, MDPI AG, Vol. 9, No. 11 ( 2021-11-05), p. 1224-
    Abstract: In this study, the propagation and evolution characteristics of internal solitary waves on slope topography in stratified fluids were investigated. A numerical model of internal solitary wave propagation based on the nonlinear potential flow theory using the multi-domain boundary element method was developed and validated. The numerical model was used to calculate the propagation process of internal solitary waves on the topography with different slope parameters, including height and angle, and the influence of slope parameters, initial amplitude, and densities jump of two-layer fluid on the evolution of internal solitary waves is discussed. It was found that the wave amplitude first increased while climbing the slope and then decreased after passing over the slope shoulder based on the calculation results, and the wave amplitude reached a maximum at the shoulder of the slope. A larger height and angle of the slope can induce larger maximum wave amplitude and more obvious tail wave characteristics. The wave amplitude gradually decreased, and a periodic tail wave was generated when propagating on the plateau after passing the slope. Both frequency and height of the tail wave were affected by the geometric parameters of the slope bottom; however, the initial amplitude of the internal solitary wave only affects the tail wave height, but not the frequency of the tail wave.
    Type of Medium: Online Resource
    ISSN: 2077-1312
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2738390-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    MDPI AG ; 2023
    In:  Journal of Marine Science and Engineering Vol. 11, No. 4 ( 2023-03-23), p. 686-
    In: Journal of Marine Science and Engineering, MDPI AG, Vol. 11, No. 4 ( 2023-03-23), p. 686-
    Abstract: A simple CFD-based data-driven reduced order modeling method was proposed for the study of damaged ship motion in waves. It consists of low-order modeling of the whole concerned parameter range and high-order modeling for selected key scenarios identified with the help of low-order results. The difference between the low and high-order results for the whole parameter range, where the main trend of the physics behind the problem is expected to be captured, is then modeled by some commonly used machine learning or data regression methods based on the data from key scenarios which is chosen as Piecewise Cubic Hermite Interpolating Polynomial (PCHIP) in this study. The final prediction is obtained by adding the results from the low-order model and the difference. The low and high-order modeling were conducted through computational fluid dynamics (CFD) simulations with coarse and refined meshes. Taking the roll Response Amplitude Operator (RAO) of a DTMB-5415 ship model with a damaged cabin as an example, the proposed physics-informed data-driven model was shown to have the same level of accuracy as pure high-order modeling, whilst the computational time can be reduced by 22~55% for the studied cases. This simple reduced order modeling approach is also expected to be applicable to other ship hydrodynamic problems.
    Type of Medium: Online Resource
    ISSN: 2077-1312
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2738390-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Gels, MDPI AG, Vol. 9, No. 9 ( 2023-09-19), p. 763-
    Abstract: Ensuring wellbore stability is of utmost importance for safety when drilling in deep formations. However, high temperatures severely disrupt the drilling fluid gel system, leading to severe stability issues within ultra-deep formations containing micropores. This study focused on the development of a polymer-based plugging material capable of withstanding high temperatures up to 200 °C. A kind of microsphere, referred to as SST (styrene–sodium styrene sulfonate copolymer), was synthesized with a particle size of 322 nm. Compared to polystyrene, the thermal stability of SST is greatly improved, with a thermal decomposition temperature of 362 °C. Even after subjecting SST to hot rolling at 200 °C for 16 h, the particle size, elemental composition, and zeta potential remained stable within an aqueous dispersion system. The results of core displacement and NMR tests demonstrate that SST considerably reduces the pore diameter with a remarkable plugging efficiency of 78.9%. Additionally, when drilling fluids reach 200 °C, SST still enhances drilling fluid suspension and dispersion, and reduces fluid loss by over 36% by facilitating the dispersion of clay particles, improving the gel structure of the drilling fluid, resisting clay dehydration, and promoting plugging. The development of SST provides valuable insights into the preparation of high-temperature-resistant microspheres and the formulation of effective plugging agents for deep-well drilling fluids.
    Type of Medium: Online Resource
    ISSN: 2310-2861
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2813982-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Coatings, MDPI AG, Vol. 12, No. 10 ( 2022-10-21), p. 1599-
    Abstract: Carbon nanocoils (CNCs) are widely used in functional devices due to their helical morphology, which can be utilized in the fabrication of functional materials with unique properties. In this study, CNCs/polyvinyl alcohol (PVA) composite films were prepared using an electrostatic spinning method and used to form a diaphragm for Fabry–Perot acoustic sensors. With the addition of CNCs, the fabricated composite film showed enhanced mechanical performance responding to acoustic wave pressure. Considering the optical and mechanical response, the content of CNCs was set as 0.14 wt.%; the highest acoustic wave pressure response of the sensor was 1.89 V/Pa at 16.2 kHz, which was relatively higher than that of devices with pure polymer films. Additionally, the sensor had a broadband frequency response from 2 to 10 kHz. The results indicate that the proposed composite film acoustic sensor is suitable for low-frequency acoustic sensing, which lays the foundation for the extended application of functional sensors based on CNCs.
    Type of Medium: Online Resource
    ISSN: 2079-6412
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2662314-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: International Journal of Molecular Sciences, MDPI AG, Vol. 15, No. 1 ( 2014-01-08), p. 725-742
    Type of Medium: Online Resource
    ISSN: 1422-0067
    Language: English
    Publisher: MDPI AG
    Publication Date: 2014
    detail.hit.zdb_id: 2019364-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: International Journal of Molecular Sciences, MDPI AG, Vol. 22, No. 4 ( 2021-02-08), p. 1694-
    Abstract: Cyclophilin (Cyp) and Ca2+/calcineurin proteins are cellular components related to fungal morphogenesis and virulence; however, their roles in mediating the pathogenesis of Botrytis cinerea, the causative agent of gray mold on over 1000 plant species, remain largely unexplored. Here, we show that disruption of cyclophilin gene BcCYP2 did not impair the pathogen mycelial growth, osmotic and oxidative stress adaptation as well as cell wall integrity, but delayed conidial germination and germling development, altered conidial and sclerotial morphology, reduced infection cushion (IC) formation, sclerotial production and virulence. Exogenous cyclic adenosine monophosphate (cAMP) rescued the deficiency of IC formation of the ∆Bccyp2 mutants, and exogenous cyclosporine A (CsA), an inhibitor targeting cyclophilins, altered hyphal morphology and prevented host-cell penetration in the BcCYP2 harboring strains. Moreover, calcineurin-dependent (CND) genes are differentially expressed in strains losing BcCYP2 in the presence of CsA, suggesting that BcCyp2 functions in the upstream of cAMP- and Ca2+/calcineurin-dependent signaling pathways. Interestingly, during IC formation, expression of BcCYP2 is downregulated in a mutant losing BcJAR1, a gene encoding histone 3 lysine 4 (H3K4) demethylase that regulates fungal development and pathogenesis, in B. cinerea, implying that BcCyp2 functions under the control of BcJar1. Collectively, our findings provide new insights into cyclophilins mediating the pathogenesis of B. cinerea and potential targets for drug intervention for fungal diseases.
    Type of Medium: Online Resource
    ISSN: 1422-0067
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2019364-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Fermentation, MDPI AG, Vol. 8, No. 7 ( 2022-06-24), p. 298-
    Abstract: Pseudomonas fluorescens (P. fluorescens) and Pseudomonas fragi (P. fragi), two kinds of psychrotrophic Pseudomonas species with pathogenicity, are likely to contaminate foods and cause diseases even in fairly cold environments, an outcome which should be suppressed. This paper investigates the antibacterial mechanisms of Dellaglioa algida (D. algida), a new type of low-temperature-resistant Lactobacillus, on two such Pseudomonas. By the enzyme treatment approach, the antibacterial substance existing in the cell-free supernatant (CFS) of D. algida is preliminarily determined as organic acid or protein; then, its inhibition effects are assessed under various culture environments, including pH value, salinity, and culture time, where the best antibacterial performance is achieved at pH = 6.00, S = 0%, and culture time = 48 h. A series of experiments on biofilms indicate that D. algida is not only able to inhibit the generation or damage the integrality of the biofilm of the two mentioned Pseudomonas, but also can reduce the motility, including swarming and swimming, of P. fragi and restrain the swarming of P. fluorescens. The aformentioned developed antibacterial mechanisms show the possibility of using D. algida in applications as an inhibitor for psychrotrophic Pseudomonas in the food industry, by virtue of its strong suppression capability, especially in cold environments.
    Type of Medium: Online Resource
    ISSN: 2311-5637
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2813985-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...