GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Energies, MDPI AG, Vol. 16, No. 13 ( 2023-06-27), p. 4996-
    Abstract: Flow boiling within conventional, mini and micro-scale channels is encountered in a wide range of engineering applications such as nuclear reactors, steam engines and cooling of electronic devices. Due to the high complexity and importance of the boiling process, several numerical and experimental investigations have been conducted for the better understanding of the underpinned physics and heat transfer characteristics. One of the most widely used numerical approaches that can analyse such phenomena is the Eulerian–Eulerian two-fluid method in conjunction with the RPI model. However, according to the current state-of-the-art methods this modelling approach heavily relies on empirical closure relationships derived for conventional channels, limiting its applicability to mini- and micro-scale channels. The present paper aims to give further insights into the applicability of this modelling approach for non-conventional channels. For this purpose, a numerical investigation utilising the Eulerian–Eulerian two-fluid model and the RPI wall heat flux partitioning model in OpenFOAM 8.0 is conducted. Initially the parameters comprising the empirical closure relationships used in the RPI sub-models are tuned against the DEBORA experiments on conventional channels, through an extensive sensitivity analysis. In the second part of the investigation, numerical simulations against flow boiling experiments within micro-channels are performed, utilising the previously optimised and validated model setup. Furthermore the importance of including a bubble coalescence and break-up sub-model to capture parameters such as the radial velocity profiles, is also illustrated. However, when the optimal model setup, in conventional tubes, is used against micro-channel experiments, the need to develop new correlations from data obtained from mini and micro-scale channel studies, not from experimental data on conventional channels, is revealed.
    Type of Medium: Online Resource
    ISSN: 1996-1073
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2437446-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Journal of Marine Science and Engineering, MDPI AG, Vol. 11, No. 2 ( 2023-01-25), p. 271-
    Abstract: The new approach on depositional conditions of the Messinian evaporites in Zakynthos Island indicates that the evaporites in the Kalamaki and Ag. Sostis areas were redeposited during the Early Pliocene. They accumulated either as turbiditic evaporites or as slumped blocks, as a response to Kalamaki thrust activity. Thrust activity developed a narrow and restricted Kalamaki foreland basin with the uplifted orogenic wedge consisting of Messinian evaporites. These evaporites eroded and redeposited in the foreland basin as submarine fans with turbiditic currents or slumped blocks (olistholiths) that consist of Messinian evaporites. These conditions occurred just before the inundation of the Mediterranean, during or prior to the Early Pliocene (Zanclean). Following the re-sedimentation of the Messinian evaporites, the inundation of the Mediterranean produced the “Lago Mare” fine-grained sediments that rest unconformably over the resedimented evaporites. The “Trubi” limestones were deposited later. It is critical to understand the origin of the “Messinian” Evaporites because they can serve as an effective seal rock for the oil and gas industry. It is thus important to evaluate their thickness and distribution into the SE Mediterranean Sea.
    Type of Medium: Online Resource
    ISSN: 2077-1312
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2738390-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Fluids, MDPI AG, Vol. 5, No. 2 ( 2020-05-22), p. 81-
    Abstract: Liquid penetration analysis in porous media is of great importance in a wide range of applications such as ink jet printing technology, painting and textile design. This article presents an investigation of droplet impingement onto metallic meshes, aiming to provide insights by identifying and quantifying impact characteristics that are difficult to measure experimentally. For this purpose, an enhanced Volume-Of-Fluid (VOF) numerical simulation framework is utilised, previously developed in the general context of the OpenFOAM CFD Toolbox. Droplet impacts on metallic meshes are performed both experimentally and numerically with satisfactory degree of agreement. From the experimental investigation three main outcomes are observed—deposition, partial imbibition, and penetration. The penetration into suspended meshes leads to spectacular multiple jetting below the mesh. A higher amount of liquid penetration is linked to higher impact velocity, lower viscosity and larger pore size dimension. An estimation of the liquid penetration is given in order to evaluate the impregnation properties of the meshes. From the parametric analysis it is shown that liquid viscosity affects the adhesion characteristics of the drops significantly, whereas droplet break-up after the impact is mostly controlled by surface tension. Additionally, wettability characteristics are found to play an important role in both liquid penetration and droplet break-up below the mesh.
    Type of Medium: Online Resource
    ISSN: 2311-5521
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2882362-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Energies, MDPI AG, Vol. 14, No. 20 ( 2021-10-14), p. 6641-
    Abstract: Phase change heat transfer within microchannels is considered one of the most promising cooling methods for the efficient cooling of high-performance electronic devices. However, there are still fundamental parameters, such as the effect of channel hydraulic diameter Dh whose effects on fluid flow and heat transfer characteristics are not clearly defined yet. The objective of the present work is to numerically investigate the first transient flow boiling characteristics from the bubble inception up to the first stages of the flow boiling regime development, in rectangular microchannels of varying hydraulic diameters, utilising an enhanced custom VOF-based solver. The solver accounts for conjugate heat transfer effects, implemented in OpenFOAM and validated in the literature through experimental results and analytical solutions. The numerical study was conducted through two different sets of simulations. In the first set, flow boiling characteristics in four single microchannels of Dh = 50, 100, 150, and 200 μm with constant channel aspect ratio of 0.5 and length of 2.4 mm were examined. Due to the different Dh, the applied heat and mass flux values varied between 20 to 200 kW/m2 and 150 to 2400 kg/m2s, respectively. The results of the two-phase simulations were compared with the corresponding initial single-phase stage of the simulations, and an increase of up to 37.4% on the global Nu number Nuglob was revealed. In the second set of simulations, the effectiveness of having microchannel evaporators of single versus multiple parallel microchannels was investigated by performing and comparing simulations of a single rectangular microchannel with Dh of 200 μm and four-parallel rectangular microchannels, each having a hydraulic diameter Dh of 50 μm. By comparing the local time-averaged thermal resistance along the channels, it is found that the parallel microchannels configuration resulted in a 23.3% decrease in the average thermal resistance R¯l compared to the corresponding single-phase simulation stage, while the flow boiling process reduced the R¯l by only 5.4% for the single microchannel case. As for the developed flow regimes, churn and slug flow dominated, whereas liquid film evaporation and, for some cases, contact line evaporation were the main contributing flow boiling mechanisms.
    Type of Medium: Online Resource
    ISSN: 1996-1073
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2437446-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...