GLORIA

GEOMAR Library Ocean Research Information Access

Your search history is empty.

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Nutrients, MDPI AG, Vol. 14, No. 20 ( 2022-10-11), p. 4226-
    Abstract: Much remains unknown about the role of added sugar in relation to cardiovascular disease (CVD) and the relative contributions of sugar-sweetened beverages (SSB) or artificially sweetened beverages (ASB) to CVD risk. Among the 109,034 women who participated in Women’s Health Initiative, we assessed average intakes of added sugar, SSB and ASB, and conducted Cox regression to estimate the hazard ratios (HRs) and their 95% confidence intervals for CVD risk. The consistency of findings was compared to a network meta-analysis of all available cohorts. During an average of 17.4 years of follow-up, 11,597 cases of total CVD (nonfatal myocardial infarction, coronary heart disease (CHD) death, stroke, coronary revascularization, and/or incident heart failure) were confirmed. Added sugar as % energy intake daily (%EAS) at ≥15.0% was positively associated with total CVD (HR = 1.08 [1.01, 1.15]) and CHD (HR = 1.20 [1.09, 1.32] ). There was also a higher risk of total CVD associated with ≥1 serving of SSB intake per day (HR = 1.29 [1.17, 1.42]), CHD (1.35 [1.16, 1.57] ), and total stroke (1.30 [1.10, 1.53]). Similarly, ASB intake was associated with an increased risk of CVD (1.14 [1.03, 1.26] ) and stroke (1.24 [1.04, 1.48]). According to the network meta-analysis, there was a large amount of heterogeneity across studies, showing no consistent pattern implicating added sugar, ASB, or SSB in CVD outcomes. A diet containing %EAS ≥15.0% and consuming ≥1 serving of SSB or ASB may be associated with a higher CVD incidence. The relative contribution of added sugar, SSB, and ASB to CVD risk warrants further investigation.
    Type of Medium: Online Resource
    ISSN: 2072-6643
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2518386-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Aerospace, MDPI AG, Vol. 9, No. 2 ( 2022-02-18), p. 110-
    Abstract: Given the pervasive use of satellite and over the horizon wireless communication technology in modern society, ionospheric disturbances that can disrupt such services are a crucial consideration. Ionospheric irregularities, plasma bubbles and other phenomena can have a great impact on satellite navigation and communications, impacting other systems reliant on such technologies. The Ionospheric Dynamics and Attitude Subsystem Satellite (IDEASSat) was a 3U developed by National Central University (NCU) to measure irregularities in the ionosphere, as well as to establish spacecraft engineering and operations capacity at NCU. The onboard Compact Ionospheric Probe (CIP) could measure high-resolution plasma parameters, which can be used for identifying ionospheric irregularities that can cause scintillation in satellite navigation and communications signals. Part of the spacecraft sub-systems were independently designed and developed by students, who were also responsible for integration, testing, and operations. IDEASSat was successfully launched into low Earth orbit on 24 January 2021, and then began mission operations. The spacecraft successfully demonstrated three-axis attitude stabilization and control, tracking, telemetry and command (TT & C), as well as flight software and ground systems that could support autonomous operation. The spacecraft experienced a critical anomaly 22 days after launch, followed by a 1.5-month communications blackout. The spacecraft briefly recovered from the blackout for long enough to replay flight data, which allowed for the cause of the blackout to be determined as an inability of the electrical power subsystem reset circuit to recover from an ionizing radiation induced single event latch-up. Although the mission was not completed, flight data obtained during the mission will help to improve the designs of future spacecraft in development at NCU. This paper will introduce IDEASSat’s final flight model design and implementation, integration, testing, environmental verification, and failure analysis, and will review the performance of the spacecraft during on-orbit operations. The results and experiences encountered in implementation and operations of the IDEASSat mission are presented here as a reference for other university small satellite teams.
    Type of Medium: Online Resource
    ISSN: 2226-4310
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2756091-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Radiation, MDPI AG, Vol. 2, No. 2 ( 2022-05-17), p. 215-227
    Abstract: The purpose of this study was to assess organ dosimetry and clinical use of [124I]I-NM404, a radiotheranostic alkylphosphocholine (APC) analog, for accurate detection and characterization of a wide variety of solid primary and metastatic malignancies anywhere in the body. Methods: Patterns of [124I] I-NM404 uptake were quantitatively analyzed and qualitatively compared with [18F]FDG PET/CT in 14 patients (median age, 61.5 years; 7 males, 7 females) with refractory metastatic cancer who were enrolled in one of two Phase I imaging studies. Primary cancer types included bronchogenic (n = 7), colorectal (n = 1), prostate (n = 1), triple-negative breast (n = 1), head and neck (n = 2), pancreatic (n = 1) carcinoma, and melanoma (n = 1). Patients were administered [124I] I-NM404 and imaged via PET/CT at 1–2, 4–6, 24, and 48 h and at 5–10 days post injection, from top of the skull to mid-thigh. Volumes of interest were drawn over lungs, heart, liver, kidneys, and whole body for dosimetry estimation using OLINDA 1.1 Representative metastatic index lesions were chosen when applicable for each case with active sites of disease to calculate maximum and mean tumor-to-background ratios (TBRmax, TBRmean), using the adjacent normal organ parenchyma as background when possible. Results: Administrations of [124I]-NM404 were safe and well-tolerated. The organs with the highest estimated absorbed dose (mean ± SD) were the lungs (1.74 ± 0.39 mSv/MBq), heart wall (1.52 ± 0.29 mSv/MBq), liver (1.28 ± 0.21 mSv/MBq) and kidneys (1.09 ± 0.20 mSv/MBq). The effective dose was 0.77 ± 0.05 mSv/MBq. Preferential uptake within metastatic foci was observed with all cancer subtypes, TBRmax ranged from 1.95 to 15.36 and TBRmean ranged from 1.63 to 6.63. Robust sensitive imaging of lesions was enhanced by delayed timing (2–6 days after single injection of [124I] I-NM404, respectively) due to persistent tumor retention coupled with progressive washout of background activity. NM404 uptake was evident in pulmonary, nodal, skeletal, CNS, and other metastatic sites of disease. Radiation related injury or necrosis were NM404 negative, whereas certain small number of metastatic brain lesions were false negative for NM404. Conclusions: In addition to being well tolerated, selective tumor uptake of NM404 with prolonged retention was demonstrated within a broad spectrum of highly treated metastatic cancers.
    Type of Medium: Online Resource
    ISSN: 2673-592X
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 3057630-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Processes, MDPI AG, Vol. 11, No. 2 ( 2023-02-08), p. 510-
    Abstract: Guillardia theta anion channelrhodopsin 1 (GtACR1) is a widely used inhibitor of optogenetics with unique conductance mechanisms and photochemistry. However, the molecular mechanism of light-gated anion conduction is poorly understood without a crystal structure for the intermediate state. In this study, we built the dark-state model based on the crystal structure of retinal and isomerized the model by twisting the C12-C13=C14-C15 dihedral step by step using molecular dynamics simulation. The conformational changes revealed the all-trans to 13-cis photoisomerization of the retinal chromophore cannot open the channel. There is no water influx, and a pre-opened K-like intermediate after photoisomerization of retinal is formed. During the opening of the ion channel, proton transfer occurs between E68 and D234. Steered molecular dynamics (SMD) and umbrella sampling indicated that the E68 and D234 were the key residues for chloride-ion conducting. We propose a revised channel opening pathway model of GtACR1 after analyzing (de)protonation of E68 and D234. Reprotonation of D234 will result in two different early L intermediates, named L1-like and L1‘-like, which correspond to the L1 and L1‘ intermediates reported in a recent study. Simulation results showed that L1-like may convert by parallel paths into L1‘-like and L2-like states. This model provides conformational details for the intermediate as well.
    Type of Medium: Online Resource
    ISSN: 2227-9717
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2720994-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    MDPI AG ; 2020
    In:  Antibiotics Vol. 9, No. 3 ( 2020-03-13), p. 120-
    In: Antibiotics, MDPI AG, Vol. 9, No. 3 ( 2020-03-13), p. 120-
    Abstract: Rising concern about the use of antibiotics in food production has resulted in many studies on the occurrence of antibiotic resistance genes (ARGs) in animal-associated bacterial communities. There are few baseline data on the abundance of ARGs on farms where chickens are intensively raised with little or no use of antibiotics. This study used a high-throughput quantitative PCR array to survey two antibiotic-free chicken farms for the occurrence of ARGs and mobile genetic elements known to enhance the spread of ARGs. No antibiotics had been used on the study farms for five years prior to this study. The results provide a baseline for the occurrence of resistance genes in the chicken production system without direct selective pressure.
    Type of Medium: Online Resource
    ISSN: 2079-6382
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2681345-2
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Chemistry, MDPI AG, Vol. 5, No. 1 ( 2023-03-06), p. 511-525
    Abstract: Methyl carboxylate esters have been shown to be potent promoters of low-temperature methanol dehydration to dimethyl ether (DME) using various zeolite catalysts. In the present work, catalytic kinetic studies, in-situ Fourier-transform infrared spectroscopy (FT-IR) and solid-state nuclear magnetic resonance spectroscopy (NMR) techniques were used to elucidate the promotional mechanism of methyl carboxylate esters on methanol dehydration to DME, using the medium pore zeolite H-ZSM-5 (MFI) as the catalyst. Kinetic studies were performed using the very potent methyl n-hexanoate promoter. The DME yield was dependent on both the methanol and methyl n-hexanoate partial pressures across the temperature ranges used in this study (110 to 130 °C). This is consistent with the promoted reaction being a bimolecular reaction between methanol and ester species adsorbed at the catalyst active sites, via an SN2 type reaction, as previously postulated. The in-situ FT-IR studies reveal that the Brønsted acid (BA) sites on H-ZSM-5 were very rapidly titrated by ester carbonyl group adsorption and bonded more strongly with esters than with methanol. Upon methanol addition, an even lower DME formation temperature (30 °C) was observed with methyl n-hexanoate pretreated H-ZSM-5 samples in the in-situ NMR studies, further confirming the strong promotion of this methyl ester on methanol dehydration to DME. The adsorption and reactivity of different methyl esters on H-ZSM-5 indicates that while methyl formate more easily dissociates into a surface methoxy species, [Si(OMe)Al], and carboxylic acid, it is a less potent promoter than alkyl-chain-containing methyl esters in methanol dehydration to DME, which in turn did not show this dissociative behavior in the low-temperature NMR studies. This indicates that methyl alkyl carboxylates do not need to be dissociated to a surface methoxy species to promote the methanol dehydration reaction and that a bimolecular associative mechanism plays an important role in promoting DME formation.
    Type of Medium: Online Resource
    ISSN: 2624-8549
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2966650-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Geosciences, MDPI AG, Vol. 9, No. 1 ( 2018-12-27), p. 16-
    Abstract: Beach nourishment was applied at three fetch-restricted sites along the estuarine margin of Delaware Bay, New Jersey. Evaluation of geomorphological performance of the nourishment project was conducted through seasonal monitoring to track linear features (shoreline, dune crest, peat edge) and to create digital elevation models (DEMs). Comparisons of the DEMs yielded sediment budgets of the updrift, fill area, and downdrift zones as well as the spatial and temporal evolution of the tidal flat, beach, and dune features within the zones. Through four years, Moore’s Beach lost all of the emplaced fill as well as an additional −5446 m3 from the fill area. The shoreline position shifted inland −12.78 m, and the foredune crest shifted inland −9.23 m. The fill area at Pierce’s Point lost all of the fill and an additional −3810 m3. The shoreline and dune crest shifted inland −7.35 m and −1.17 m, respectively. The Reed’s Beach study area benefited from beach fill updrift that more than offset the losses in the fill area, a net gain of 2107 m3. There was a major contrast in volumetric change between the updrift and downdrift portions. Sediment budget calculations established alongshore transport was an important factor in the fetch-restricted estuarine environment driving the variable geomorphological responses in the updrift, fill, and downdrift zones.
    Type of Medium: Online Resource
    ISSN: 2076-3263
    Language: English
    Publisher: MDPI AG
    Publication Date: 2018
    detail.hit.zdb_id: 2655946-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    MDPI AG ; 2014
    In:  Education Sciences Vol. 4, No. 1 ( 2014-03-19), p. 155-171
    In: Education Sciences, MDPI AG, Vol. 4, No. 1 ( 2014-03-19), p. 155-171
    Abstract: While there have been very limited studies of the educational computing literature to analyze the research trends since the early emergence of educational computing technologies, the authors argue that it is important for both researchers and educators to understand the major, historical educational computing trends in order to inform understandings of current and future eLearning trends. This study provides the findings of an analysis of 2,694 journal articles published between 1977 and 2005 in four major, international educational computing journals. It provides the platform for a subsequent analysis for the period 2006–2014 and beyond, as future educational computing research is published. The journal articles analyzed were categorized according to their research themes. Subsequently, clustering analysis, multi-dimension scale analysis, and research diversity analysis were performed on the categorized results to explore the research trends. The research literature analysis confirmed that there were identifiable evolutionary trends dating from 1977, and, importantly, the analysis highlighted that each key breakthrough in technology was accompanied by increased educational research about those technologies to inform educational practices. Importantly, two major driving forces of the historical trends identified were technologies and pedagogical approaches. The paper concludes with explanations of how these trends from 1977–2005 have shaped the current focus on Technological Pedagogical Content Knowledge (TPACK) needed for effective current and future eLearning.
    Type of Medium: Online Resource
    ISSN: 2227-7102
    Language: English
    Publisher: MDPI AG
    Publication Date: 2014
    detail.hit.zdb_id: 2704213-3
    SSG: 5,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    MDPI AG ; 2022
    In:  Cancers Vol. 14, No. 15 ( 2022-07-28), p. 3666-
    In: Cancers, MDPI AG, Vol. 14, No. 15 ( 2022-07-28), p. 3666-
    Abstract: PTEN is the second most highly mutated tumor suppressor in cancer, following only p53. The PTEN protein functions as a phosphatase with lipid- and protein-phosphatase activity. PTEN-lipid-phosphatase activity dephosphorylates PIP3 to form PIP2, and it then antagonizes PI3K and blocks the activation of AKT, while its protein-phosphatase activity dephosphorylates different protein substrates and plays various roles in tumorigenesis. Here, we review the PTEN mutations and protein-phosphatase substrates in tumorigenesis and metastasis. Our purpose is to clarify how PTEN protein phosphatase contributes to its tumor-suppressive functions through PI3K-independent activities.
    Type of Medium: Online Resource
    ISSN: 2072-6694
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2527080-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Vaccines, MDPI AG, Vol. 9, No. 8 ( 2021-08-09), p. 881-
    Abstract: The coronavirus disease 2019 (COVID-19) pandemic has highlighted the urgent need for effective prophylactic vaccination to prevent the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Intranasal vaccination is an attractive strategy to prevent COVID-19 as the nasal mucosa represents the first-line barrier to SARS-CoV-2 entry. The current intramuscular vaccines elicit systemic immunity but not necessarily high-level mucosal immunity. Here, we tested a single intranasal dose of our candidate adenovirus type 5-vectored vaccine encoding the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein (AdCOVID) in inbred, outbred, and transgenic mice. A single intranasal vaccination with AdCOVID elicited a strong and focused immune response against RBD through the induction of mucosal IgA in the respiratory tract, serum neutralizing antibodies, and CD4+ and CD8+ T cells with a Th1-like cytokine expression profile. A single AdCOVID dose resulted in immunity that was sustained for over six months. Moreover, a single intranasal dose completely protected K18-hACE2 mice from lethal SARS-CoV-2 challenge, preventing weight loss and mortality. These data show that AdCOVID promotes concomitant systemic and mucosal immunity and represents a promising vaccine candidate.
    Type of Medium: Online Resource
    ISSN: 2076-393X
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2703319-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...