GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Online Resource  (9)
  • Copernicus GmbH  (9)
  • 1
    In: Geoscientific Model Development, Copernicus GmbH, Vol. 12, No. 1 ( 2019-01-21), p. 363-386
    Abstract: Abstract. We present Nemo-Nordic, a Baltic and North Sea model based on the NEMO ocean engine. Surrounded by highly industrialized countries, the Baltic and North seas and their assets associated with shipping, fishing and tourism are vulnerable to anthropogenic pressure and climate change. Ocean models providing reliable forecasts and enabling climatic studies are important tools for the shipping infrastructure and to get a better understanding of the effects of climate change on the marine ecosystems. Nemo-Nordic is intended to be a tool for both short-term and long-term simulations and to be used for ocean forecasting as well as process and climatic studies. Here, the scientific and technical choices within Nemo-Nordic are introduced, and the reasons behind the design of the model and its domain and the inclusion of the two seas are explained. The model's ability to represent barotropic and baroclinic dynamics, as well as the vertical structure of the water column, is presented. Biases are shown and discussed. The short-term capabilities of the model are presented, especially its capabilities to represent sea level on an hourly timescale with a high degree of accuracy. We also show that the model can represent longer timescales, with a focus on the major Baltic inflows and the variability in deep-water salinity in the Baltic Sea.
    Type of Medium: Online Resource
    ISSN: 1991-9603
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2019
    detail.hit.zdb_id: 2456725-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Earth System Dynamics, Copernicus GmbH, Vol. 12, No. 3 ( 2021-09-16), p. 939-973
    Abstract: Abstract. Nonlinear responses to externally forced climate change are known to dampen or amplify the local climate impact due to complex cross-compartmental feedback loops in the Earth system. These feedbacks are less well represented in the traditional stand-alone atmosphere and ocean models on which many of today's regional climate assessments rely (e.g., EURO-CORDEX, NOSCCA and BACC II). This has promoted the development of regional climate models for the Baltic Sea region by coupling different compartments of the Earth system into more comprehensive models. Coupled models more realistically represent feedback loops than the information imposed on the region by prescribed boundary conditions and, thus, permit more degrees of freedom. In the past, several coupled model systems have been developed for Europe and the Baltic Sea region. This article reviews recent progress on model systems that allow two-way communication between atmosphere and ocean models; models for the land surface, including the terrestrial biosphere; and wave models at the air–sea interface and hydrology models for water cycle closure. However, several processes that have mostly been realized by one-way coupling to date, such as marine biogeochemistry, nutrient cycling and atmospheric chemistry (e.g., aerosols), are not considered here. In contrast to uncoupled stand-alone models, coupled Earth system models can modify mean near-surface air temperatures locally by up to several degrees compared with their stand-alone atmospheric counterparts using prescribed surface boundary conditions. The representation of small-scale oceanic processes, such as vertical mixing and sea-ice dynamics, appears essential to accurately resolve the air–sea heat exchange over the Baltic Sea, and these parameters can only be provided by online coupled high-resolution ocean models. In addition, the coupling of wave models at the ocean–atmosphere interface allows for a more explicit formulation of small-scale to microphysical processes with local feedbacks to water temperature and large-scale processes such as oceanic upwelling. Over land, important climate feedbacks arise from dynamical terrestrial vegetation changes as well as the implementation of land-use scenarios and afforestation/deforestation that further alter surface albedo, roughness length and evapotranspiration. Furthermore, a good representation of surface temperatures and roughness length over open sea and land areas is critical for the representation of climatic extremes such as heavy precipitation, storms, or tropical nights (defined as nights where the daily minimum temperature does not fall below 20 ∘C), and these parameters appear to be sensitive to coupling. For the present-day climate, many coupled atmosphere–ocean and atmosphere–land surface models have demonstrated the added value of single climate variables, in particular when low-quality boundary data were used in the respective stand-alone model. This makes coupled models a prospective tool for downscaling climate change scenarios from global climate models because these models often have large biases on the regional scale. However, the coupling of hydrology models to close the water cycle remains problematic, as the accuracy of precipitation provided by atmosphere models is, in most cases, insufficient to realistically simulate the runoff to the Baltic Sea without bias adjustments. Many regional stand-alone ocean and atmosphere models are tuned to suitably represent present-day climatologies rather than to accurately simulate climate change. Therefore, more research is required into how the regional climate sensitivity (e.g., the models' response to a given change in global mean temperature) is affected by coupling and how the spread is altered in multi-model and multi-scenario ensembles of coupled models compared with uncoupled ones.
    Type of Medium: Online Resource
    ISSN: 2190-4987
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2021
    detail.hit.zdb_id: 2578793-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Advances in Science and Research, Copernicus GmbH, Vol. 17 ( 2020-06-18), p. 87-104
    Abstract: Abstract. The formation of convective sea-effect snowfall (i.e., snow bands) is triggered by cold air outbreaks over a relatively warm and open sea. Snow bands can produce intense snowfall which can last for several days over the sea and potentially move towards the coast depending on wind direction. We defined the meteorological conditions which statistically favor the formation of snow bands over the north-eastern Baltic Sea of the Finnish coastline and investigated the spatio-temporal characteristics of these snow bands. A set of criteria, which have been previously shown to be able to detect the days favoring sea-effect snowfall for Swedish coastal area, were refined for Finland based on four case study simulations, utilizing a convection-permitting numerical weather prediction (NWP) model (HARMONIE-AROME). The main modification of the detection criteria concerned the threshold for 10 m wind speed: the generally assumed threshold value of 10 m s−1 was decreased to 7 m s−1. The refined criteria were then applied to regional climate model (RCA4) data, for an 11-year time period (2000–2010). When only considering cases in Finland with onshore wind direction, we found on average 3 d yr−1 with favorable conditions for coastal sea-effect snowfall. The heaviest convective snowfall events were detected most frequently over the southern coastline. Statistics of the favorable days indicated that the lower 10 m wind speed threshold improved the representation of the frequency of snow bands. For most of the favorable snow band days, the location and order of magnitude of precipitation were closely captured, when compared to gridded observational data for land areas and weather radar reflectivity images. Lightning were observed during one third of the favorable days over the Baltic Sea area.
    Type of Medium: Online Resource
    ISSN: 1992-0636
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2020
    detail.hit.zdb_id: 2409176-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Earth System Dynamics, Copernicus GmbH, Vol. 13, No. 1 ( 2022-01-25), p. 159-199
    Abstract: Abstract. The Baltic Sea, located in northern Europe, is a semi-enclosed, shallow and tideless sea with seasonal sea-ice cover in its northern sub-basins. Its long water residence time contributes to oxygen depletion in the bottom water of its southern sub-basins. In this study, recently performed scenario simulations for the Baltic Sea including marine biogeochemistry were analysed and compared with earlier published projections. Specifically, dynamical downscaling using a regionally coupled atmosphere–ocean climate model was used to regionalise four global Earth system models. However, as the regional climate model does not include components representing terrestrial and marine biogeochemistry, an additional catchment and a coupled physical–biogeochemical model for the Baltic Sea were included. The scenario simulations take the impact of various global sea level rise scenarios into account. According to the projections, compared to the present climate, higher water temperatures, a shallower mixed layer with a sharper thermocline during summer, less sea-ice cover and greater mixing in the northern Baltic Sea during winter can be expected. Both the frequency and the duration of marine heat waves will increase significantly, in particular in the coastal zone of the southern Baltic Sea (except in regions with frequent upwellings). Nonetheless, due to the uncertainties in the projections regarding regional winds, the water cycle and the global sea level rise, robust and statistically significant salinity changes could not be identified. The impact of a changing climate on biogeochemical cycling is predicted to be considerable but still smaller than that of plausible nutrient input changes. Implementing the proposed Baltic Sea Action Plan, a nutrient input abatement plan for the entire catchment area, would result in a significantly improved ecological status of the Baltic Sea, including reductions in the size of the hypoxic area also in a future climate, which in turn would increase the resilience of the Baltic Sea against anticipated climate change. While our findings regarding changes in heat-cycle variables mainly confirm earlier scenario simulations, they differ substantially from earlier projections of salinity and biogeochemical cycles, due to differences in experimental setups and in input scenarios for bioavailable nutrients.
    Type of Medium: Online Resource
    ISSN: 2190-4987
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2022
    detail.hit.zdb_id: 2578793-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Earth System Dynamics, Copernicus GmbH, Vol. 13, No. 1 ( 2022-03-15), p. 457-593
    Abstract: Abstract. Based on the Baltic Earth Assessment Reports of this thematic issue in Earth System Dynamics and recent peer-reviewed literature, current knowledge of the effects of global warming on past and future changes in climate of the Baltic Sea region is summarised and assessed. The study is an update of the Second Assessment of Climate Change (BACC II) published in 2015 and focuses on the atmosphere, land, cryosphere, ocean, sediments, and the terrestrial and marine biosphere. Based on the summaries of the recent knowledge gained in palaeo-, historical, and future regional climate research, we find that the main conclusions from earlier assessments still remain valid. However, new long-term, homogenous observational records, for example, for Scandinavian glacier inventories, sea-level-driven saltwater inflows, so-called Major Baltic Inflows, and phytoplankton species distribution, and new scenario simulations with improved models, for example, for glaciers, lake ice, and marine food web, have become available. In many cases, uncertainties can now be better estimated than before because more models were included in the ensembles, especially for the Baltic Sea. With the help of coupled models, feedbacks between several components of the Earth system have been studied, and multiple driver studies were performed, e.g. projections of the food web that include fisheries, eutrophication, and climate change. New datasets and projections have led to a revised understanding of changes in some variables such as salinity. Furthermore, it has become evident that natural variability, in particular for the ocean on multidecadal timescales, is greater than previously estimated, challenging our ability to detect observed and projected changes in climate. In this context, the first palaeoclimate simulations regionalised for the Baltic Sea region are instructive. Hence, estimated uncertainties for the projections of many variables increased. In addition to the well-known influence of the North Atlantic Oscillation, it was found that also other low-frequency modes of internal variability, such as the Atlantic Multidecadal Variability, have profound effects on the climate of the Baltic Sea region. Challenges were also identified, such as the systematic discrepancy between future cloudiness trends in global and regional models and the difficulty of confidently attributing large observed changes in marine ecosystems to climate change. Finally, we compare our results with other coastal sea assessments, such as the North Sea Region Climate Change Assessment (NOSCCA), and find that the effects of climate change on the Baltic Sea differ from those on the North Sea, since Baltic Sea oceanography and ecosystems are very different from other coastal seas such as the North Sea. While the North Sea dynamics are dominated by tides, the Baltic Sea is characterised by brackish water, a perennial vertical stratification in the southern subbasins, and a seasonal sea ice cover in the northern subbasins.
    Type of Medium: Online Resource
    ISSN: 2190-4987
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2022
    detail.hit.zdb_id: 2578793-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Copernicus GmbH ; 2022
    In:  Earth System Dynamics Vol. 13, No. 1 ( 2022-01-24), p. 133-157
    In: Earth System Dynamics, Copernicus GmbH, Vol. 13, No. 1 ( 2022-01-24), p. 133-157
    Abstract: Abstract. The Baltic Sea region is very sensitive to climate change; it is a region with spatially varying climate and diverse ecosystems, but it is also under pressure due to a high population in large parts of the area. Climate change impacts could easily exacerbate other anthropogenic stressors such as biodiversity stress from society and eutrophication of the Baltic Sea considerably. Therefore, there has been a focus on estimations of future climate change and its impacts in recent research. In this overview paper, we will concentrate on a presentation of recent climate projections from 12.5 km horizontal resolution atmosphere-only regional climate models from Coordinated Regional Climate Downscaling Experiment – European domain (EURO-CORDEX). Comparison will also be done with corresponding prior results as well as with coupled atmosphere–ocean regional climate models. The recent regional climate model projections strengthen the conclusions from previous assessments. This includes a strong warming, in particular in the north in winter. Precipitation is projected to increase in the whole region apart from the southern half during summer. Consequently, the new results lend more credibility to estimates of uncertainties and robust features of future climate change. Furthermore, the larger number of scenarios gives opportunities to better address impacts of mitigation measures. In simulations with a coupled atmosphere–ocean model, the climate change signal is locally modified relative to the corresponding stand-alone atmosphere regional climate model. Differences are largest in areas where the coupled system arrives at different sea-surface temperatures and sea-ice conditions.
    Type of Medium: Online Resource
    ISSN: 2190-4987
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2022
    detail.hit.zdb_id: 2578793-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Copernicus GmbH ; 2019
    In:  Ocean Science Vol. 15, No. 6 ( 2019-11-07), p. 1399-1418
    In: Ocean Science, Copernicus GmbH, Vol. 15, No. 6 ( 2019-11-07), p. 1399-1418
    Abstract: Abstract. We analyze extreme sea levels (ESLs) and related uncertainty in an ensemble of regional climate change scenarios for the Baltic Sea. The ERA-40 reanalysis and five Coupled Model Intercomparison Project phase 5 (CMIP5) global general circulation models (GCMs) have been dynamically downscaled with the coupled atmosphere–ice–ocean model RCA4-NEMO (Rossby Centre regional atmospheric model version 4 – Nucleus for European Modelling of the Ocean). The 100-year return levels along the Swedish coast in the ERA-40 hindcast are within the 95 % confidence limits of the observational estimates, except those on the west coast. The ensemble mean of the 100-year return levels averaged over the five GCMs shows biases of less than 10 cm. A series of sensitivity studies explores how the choice of different parameterizations, open boundary conditions and atmospheric forcing affects the estimates of 100-year return levels. A small ensemble of different regional climate models (RCMs) forced with ERA-40 shows the highest uncertainty in ESLs in the southwestern Baltic Sea and in the northeastern part of the Bothnian Bay. Some regions like the Skagerrak, Gulf of Finland and Gulf of Riga are sensitive to the choice of the RCM. A second ensemble of one RCM forced with different GCMs uncovers a lower sensitivity of ESLs against the variance introduced by different GCMs. The uncertainty in the estimates of 100-year return levels introduced by GCMs ranges from 20 to 40 cm at different stations and includes the estimates based on observations. It is of similar size to the 95 % confidence limits of 100-year return levels from tide gauge records.
    Type of Medium: Online Resource
    ISSN: 1812-0792
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2019
    detail.hit.zdb_id: 2183769-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Copernicus GmbH ; 2022
    In:  Earth System Dynamics Vol. 13, No. 1 ( 2022-03-30), p. 613-631
    In: Earth System Dynamics, Copernicus GmbH, Vol. 13, No. 1 ( 2022-03-30), p. 613-631
    Abstract: Abstract. Atmospheric rivers (ARs) are important drivers of hazardous precipitation levels and are often associated with intense floods. So far, the response of ARs to climate change in Europe has been investigated using global climate models within the CMIP5 framework. However, the spatial resolution of those models (1–3∘) is too coarse for an adequate assessment of local to regional precipitation patterns. Using a regional climate model with 0.22∘ resolution, we downscaled an ensemble consisting of 1 ERA-Interim (ERAI) reanalysis data hindcast simulation, 9 global historical, and 24 climate scenario simulations following greenhouse gas emission scenarios RCP2.6, RCP4.5, and RCP8.5. The performance of the climate model to simulate AR frequencies and AR-induced precipitation was tested against ERAI. Overall, we find a good agreement between the downscaled CMIP5 historical simulations and ERAI. However, the downscaled simulations better represented small-scale spatial characteristics. This was most evident over the terrain of the Iberian Peninsula, where the AR-induced precipitation pattern clearly reflected prominent east–west topographical elements, resulting in zonal bands of high and low AR impact. Over central Europe, the models simulated a smaller propagation distance of ARs toward eastern Europe than obtained using the ERAI data. Our models showed that ARs in a future warmer climate will be more frequent and more intense, especially in the higher-emission scenarios (RCP4.5, RCP8.5). However, assuming low emissions (RCP2.6), the related changes can be mostly mitigated. According to the high-emission scenario RCP8.5, AR-induced precipitation will increase by 20 %–40 % in western central Europe, whereas mean precipitation rates increase by a maximum of only 12 %. Over the Iberian Peninsula, AR-induced precipitation will slightly decrease (∼6 %) but the decrease in the mean rate will be larger (∼15 %). These changes will lead to an overall increased fractional contribution of ARs to heavy precipitation, with the greatest impact over the Iberian Peninsula (15 %–30 %) and western France (∼15 %). Likewise, the fractional share of yearly maximum precipitation attributable to ARs will increase over the Iberian Peninsula, the UK, and western France. Over Norway, average AR precipitation rates will decline by −5 % to −30 %, most likely due to dynamic changes, with ARs originating from latitudes 〉 60∘ N decreasing by up to 20 % and those originating south of 45∘ N increasing. This suggests that ARs over Norway will follow longer routes over the continent, such that additional moisture uptake will be impeded. By contrast, ARs from 〉60∘ N will take up moisture from the North Atlantic before making landfall over Norway. The found changes in the local AR pathway are probably driven by larger-scale circulation changes such as a change in dominating weather regimes and/or changes in the winter storm track over the North Atlantic.
    Type of Medium: Online Resource
    ISSN: 2190-4987
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2022
    detail.hit.zdb_id: 2578793-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Copernicus GmbH ; 2017
    In:  Earth System Dynamics Vol. 8, No. 1 ( 2017-03-06), p. 163-175
    In: Earth System Dynamics, Copernicus GmbH, Vol. 8, No. 1 ( 2017-03-06), p. 163-175
    Abstract: Abstract. Convective snow bands develop in response to a cold air outbreak from the continent or the frozen sea over the open water surface of lakes or seas. The comparatively warm water body triggers shallow convection due to increased heat and moisture fluxes. Strong winds can align with this convection into wind-parallel cloud bands, which appear stationary as the wind direction remains consistent for the time period of the snow band event, delivering enduring snow precipitation at the approaching coast. The statistical analysis of a dataset from an 11-year high-resolution atmospheric regional climate model (RCA4) indicated 4 to 7 days a year of moderate to highly favourable conditions for the development of convective snow bands in the Baltic Sea region. The heaviest and most frequent lake effect snow was affecting the regions of Gävle and Västervik (along the Swedish east coast) as well as Gdansk (along the Polish coast). However, the hourly precipitation rate is often higher in Gävle than in the Västervik region. Two case studies comparing five different RCA4 model setups have shown that the Rossby Centre atmospheric regional climate model RCA4 provides a superior representation of the sea surface with more accurate sea surface temperature (SST) values when coupled to the ice–ocean model NEMO as opposed to the forcing by the ERA-40 reanalysis data. The refinement of the resolution of the atmospheric model component leads, especially in the horizontal direction, to significant improvement in the representation of the mesoscale circulation process as well as the local precipitation rate and area by the model.
    Type of Medium: Online Resource
    ISSN: 2190-4987
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2017
    detail.hit.zdb_id: 2578793-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...