GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Online Resource  (2)
  • Association for the Advancement of Artificial Intelligence (AAAI)  (2)
Material
  • Online Resource  (2)
Publisher
  • Association for the Advancement of Artificial Intelligence (AAAI)  (2)
Language
Years
  • 1
    Online Resource
    Online Resource
    Association for the Advancement of Artificial Intelligence (AAAI) ; 2023
    In:  Proceedings of the AAAI Conference on Artificial Intelligence Vol. 37, No. 12 ( 2023-06-26), p. 14729-14737
    In: Proceedings of the AAAI Conference on Artificial Intelligence, Association for the Advancement of Artificial Intelligence (AAAI), Vol. 37, No. 12 ( 2023-06-26), p. 14729-14737
    Abstract: The use of neural networks in safety-critical systems requires safe and robust models, due to the existence of adversarial attacks. Knowing the minimal adversarial perturbation of any input x, or, equivalently, knowing the distance of x from the classification boundary, allows evaluating the classification robustness, providing certifiable predictions. Unfortunately, state-of-the-art techniques for computing such a distance are computationally expensive and hence not suited for online applications. This work proposes a novel family of classifiers, namely Signed Distance Classifiers (SDCs), that, from a theoretical perspective, directly output the exact distance of x from the classification boundary, rather than a probability score (e.g., SoftMax). SDCs represent a family of robust-by-design classifiers. To practically address the theoretical requirements of an SDC, a novel network architecture named Unitary-Gradient Neural Network is presented. Experimental results show that the proposed architecture approximates a signed distance classifier, hence allowing an online certifiable classification of x at the cost of a single inference.
    Type of Medium: Online Resource
    ISSN: 2374-3468 , 2159-5399
    Language: Unknown
    Publisher: Association for the Advancement of Artificial Intelligence (AAAI)
    Publication Date: 2023
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Association for the Advancement of Artificial Intelligence (AAAI) ; 2023
    In:  Proceedings of the AAAI Conference on Artificial Intelligence Vol. 37, No. 12 ( 2023-06-26), p. 15064-15072
    In: Proceedings of the AAAI Conference on Artificial Intelligence, Association for the Advancement of Artificial Intelligence (AAAI), Vol. 37, No. 12 ( 2023-06-26), p. 15064-15072
    Abstract: This work presents Z-Mask, an effective and deterministic strategy to improve the adversarial robustness of convolutional networks against physically-realizable adversarial attacks. The presented defense relies on specific Z-score analysis performed on the internal network features to detect and mask the pixels corresponding to adversarial objects in the input image. To this end, spatially contiguous activations are examined in shallow and deep layers to suggest potential adversarial regions. Such proposals are then aggregated through a multi-thresholding mechanism. The effectiveness of Z-Mask is evaluated with an extensive set of experiments carried out on models for semantic segmentation and object detection. The evaluation is performed with both digital patches added to the input images and printed patches in the real world. The results confirm that Z-Mask outperforms the state-of-the-art methods in terms of detection accuracy and overall performance of the networks under attack. Furthermore, Z-Mask preserves its robustness against defense-aware attacks, making it suitable for safe and secure AI applications.
    Type of Medium: Online Resource
    ISSN: 2374-3468 , 2159-5399
    Language: Unknown
    Publisher: Association for the Advancement of Artificial Intelligence (AAAI)
    Publication Date: 2023
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...