GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Online Resource  (2)
  • American Physiological Society  (2)
  • 1
    Online Resource
    Online Resource
    American Physiological Society ; 2015
    In:  American Journal of Physiology-Cell Physiology Vol. 309, No. 6 ( 2015-09-15), p. C363-C372
    In: American Journal of Physiology-Cell Physiology, American Physiological Society, Vol. 309, No. 6 ( 2015-09-15), p. C363-C372
    Abstract: Pulmonary arterial hypertension (PAH) is a devastating disease affecting lung vasculature. The pulmonary arteries become occluded due to increased proliferation and suppressed apoptosis of the pulmonary artery smooth muscle cells (PASMCs) within the vascular wall. It was recently shown that DNA damage could trigger this phenotype by upregulating poly(ADP-ribose)polymerase 1 (PARP-1) expression, although the exact mechanism remains unclear. In silico analyses and studies in cancer demonstrated that microRNA miR-223 targets PARP-1. We thus hypothesized that miR-223 downregulation triggers PARP-1 overexpression, as well as the proliferation/apoptosis imbalance observed in PAH. We provide evidence that miR-223 is downregulated in human PAH lungs, distal PAs, and isolated PASMCs. Furthermore, using a gain and loss of function approach, we showed that increased hypoxia-inducible factor 1α, which is observed in PAH, triggers this decrease in miR-223 expression and subsequent overexpression of PARP-1 allowing PAH-PASMC proliferation and resistance to apoptosis. Finally, we demonstrated that restoring the expression of miR-223 in lungs of rats with monocrotaline-induced PAH reversed established PAH and provided beneficial effects on vascular remodeling, pulmonary resistance, right ventricle hypertrophy, and survival. We provide evidence that miR-223 downregulation in PAH plays an important role in numerous pathways implicated in the disease and restoring its expression is able to reverse PAH.
    Type of Medium: Online Resource
    ISSN: 0363-6143 , 1522-1563
    Language: English
    Publisher: American Physiological Society
    Publication Date: 2015
    detail.hit.zdb_id: 1477334-X
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Physiological Society ; 2020
    In:  American Journal of Physiology-Lung Cellular and Molecular Physiology Vol. 319, No. 2 ( 2020-08-01), p. L277-L288
    In: American Journal of Physiology-Lung Cellular and Molecular Physiology, American Physiological Society, Vol. 319, No. 2 ( 2020-08-01), p. L277-L288
    Abstract: In the last few months, the number of cases of a new coronavirus-related disease (COVID-19) rose exponentially, reaching the status of a pandemic. Interestingly, early imaging studies documented that pulmonary vascular thickening was specifically associated with COVID-19 pneumonia, implying a potential tropism of the virus for the pulmonary vasculature. Moreover, SARS-CoV-2 infection is associated with inflammation, hypoxia, oxidative stress, mitochondrial dysfunction, DNA damage, and lung coagulopathy promoting endothelial dysfunction and microthrombosis. These features are strikingly similar to what is seen in pulmonary vascular diseases. Although the consequences of COVID-19 on the pulmonary circulation remain to be explored, several viruses have been previously thought to be involved in the development of pulmonary vascular diseases. Patients with preexisting pulmonary vascular diseases also appear at increased risk of morbidity and mortality. The present article reviews the molecular factors shared by coronavirus infection and pulmonary vasculature defects, and the clinical relevance of pulmonary vascular alterations in the context of COVID-19.
    Type of Medium: Online Resource
    ISSN: 1040-0605 , 1522-1504
    Language: English
    Publisher: American Physiological Society
    Publication Date: 2020
    detail.hit.zdb_id: 1477300-4
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...