GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Online Resource  (30)
  • American Meteorological Society  (30)
  • 1
    In: Journal of Physical Oceanography, American Meteorological Society, ( 2021-06-02)
    Abstract: Here, we develop a framework for understanding the observations presented in the accompanying paper (Part I) by Becherer et al. (2021). In this framework, the internal tide saturates as it shoals due to amplitude limitation with decreasing water depth ( H ). From this framework evolves estimates of averaged energetics of the internal tide; specifically, energy, 〈 APE 〉, energy flux, 〈 F E 〉, and energy flux divergence, ∂ x 〈 F E 〉. Since we observe that 〈 D 〉 ≈ ∂ x 〈 F E 〉, we also interpret our estimate of ∂ x 〈 F E 〉 as 〈 D 〉. These estimates represent a parameterization of the energy in the internal tide as it saturates over the inner continental shelf. The parameterization depends solely on depth-mean stratification and bathymetry. A summary result is that the cross-shelf depth dependencies of 〈 APE 〉, 〈 F E 〉 and ∂ x 〈 F E 〉 are analogous to those for shoaling surface gravity waves in the surf zone, suggesting that the inner shelf is the surf zone for the internal tide . A test of our simple parameterization against a range of data sets suggests that it is broadly applicable.
    Type of Medium: Online Resource
    ISSN: 0022-3670 , 1520-0485
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2021
    detail.hit.zdb_id: 2042184-9
    detail.hit.zdb_id: 184162-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Journal of Physical Oceanography, American Meteorological Society, Vol. 50, No. 10 ( 2020-10-01), p. 2965-2981
    Abstract: Temperature and velocity measurements from 42 moorings were used to investigate the alongshore variability of nonlinear internal bores as they propagated across the central California inner shelf. Moorings were deployed September–October 2017 offshore of the Point Sal headland. Regional coverage was ~30 km alongshore and ~15 km across shore, spanning 9–100-m water depths. In addition to subtidal processes modulating regional stratification, internal bores generated complex spatiotemporal patterns of stratification variability. Internal bores were alongshore continuous on the order of tens of kilometers at the 50-m isobath, but the length scales of frontal continuity decreased to O (1 km) at the 25-m isobath. The depth-averaged, bandpass-filtered (from 3 min to 16 h) internal bore kinetic energy was found to be nonuniform along a bore front, even in the case of an alongshore-continuous bore. The pattern of along-bore variability varied for each bore, but a 2-week average indicated that was generally strongest around Point Sal. The stratification ahead of a bore influenced both the bore’s amplitude and cross-shore evolution. The data suggest that alongshore stratification gradients can cause a bore to evolve differently at various alongshore locations. Three potential bore fates were observed: 1) bores transiting intact to the 9-m isobath, 2) bores being overrun by faster, subsequent bores, leading to bore-merging events, and 3) bores disappearing when the upstream pycnocline was near or below middepth. Maps of hourly stratification at each mooring and the estimated position of sequential bores demonstrated that an individual internal bore can significantly impact the waveguide of the subsequent bore.
    Type of Medium: Online Resource
    ISSN: 0022-3670 , 1520-0485
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2020
    detail.hit.zdb_id: 2042184-9
    detail.hit.zdb_id: 184162-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Meteorological Society ; 2021
    In:  Bulletin of the American Meteorological Society Vol. 102, No. 5 ( 2021-05), p. E1033-E1063
    In: Bulletin of the American Meteorological Society, American Meteorological Society, Vol. 102, No. 5 ( 2021-05), p. E1033-E1063
    Abstract: The inner shelf, the transition zone between the surfzone and the midshelf, is a dynamically complex region with the evolution of circulation and stratification driven by multiple physical processes. Cross-shelf exchange through the inner shelf has important implications for coastal water quality, ecological connectivity, and lateral movement of sediment and heat. The Inner-Shelf Dynamics Experiment (ISDE) was an intensive, coordinated, multi-institution field experiment from September–October 2017, conducted from the midshelf, through the inner shelf, and into the surfzone near Point Sal, California. Satellite, airborne, shore- and ship-based remote sensing, in-water moorings and ship-based sampling, and numerical ocean circulation models forced by winds, waves, and tides were used to investigate the dynamics governing the circulation and transport in the inner shelf and the role of coastline variability on regional circulation dynamics. Here, the following physical processes are highlighted: internal wave dynamics from the midshelf to the inner shelf; flow separation and eddy shedding off Point Sal; offshore ejection of surfzone waters from rip currents; and wind-driven subtidal circulation dynamics. The extensive dataset from ISDE allows for unprecedented investigations into the role of physical processes in creating spatial heterogeneity, and nonlinear interactions between various inner-shelf physical processes. Overall, the highly spatially and temporally resolved oceanographic measurements and numerical simulations of ISDE provide a central framework for studies exploring this complex and fascinating region of the ocean.
    Type of Medium: Online Resource
    ISSN: 0003-0007 , 1520-0477
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2021
    detail.hit.zdb_id: 2029396-3
    detail.hit.zdb_id: 419957-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Journal of Physical Oceanography, American Meteorological Society, ( 2021-09-17)
    Abstract: The ocean is home to many different submesoscale phenomena, including internal waves, fronts, and gravity currents. Each of these processes entail complex nonlinear dynamics, even in isolation. Here we present shipboard, moored, and remote observations of a submesoscale gravity current front created by a shoaling internal tidal bore in the coastal ocean. The internal bore is observed to flatten as it shoals, leaving behind a gravity current front that propagates significantly slower than the bore. We posit that the generation and separation of the front from the bore is related to particular stratification ahead of the bore, which allows the bore to reach the maximum possible internal wave speed. After the front is calved from the bore, it is observed to propagate as a gravity current for ≈4 hours, with associated elevated turbulent dissipation rates. A strong cross-shore gradient of along-shore velocity creates enhanced vertical vorticity (Rossby number ≈ 40) that remains locked with the front. Lateral shear instabilities develop along the front and may hasten its demise.
    Type of Medium: Online Resource
    ISSN: 0022-3670 , 1520-0485
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2021
    detail.hit.zdb_id: 2042184-9
    detail.hit.zdb_id: 184162-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Journal of Physical Oceanography, American Meteorological Society, ( 2021-05-14)
    Abstract: Broadly-distributed measurements of velocity, density and turbulence spanning the inner shelf off central California indicate that (i) the average shoreward-directed internal tide energy flux (〈 F E 〉) decreases to near 0 at the 25 m isobath; (ii) the vertically-integrated turbulence dissipation rate (〈 D 〉) is approximately equal to the flux divergence of internal tide energy ( ∂ x 〈 F E 〉); (iii) the ratio of turbulence energy dissipation in the interior relative to the bottom boundary layer (BBL) decreases toward shallow waters; (iv) going inshore, 〈 F E 〉 becomes decorrelated with the incoming internal wave energy flux; and (v) 〈 F E 〉 becomes increasingly correlated with stratification toward shallower water.
    Type of Medium: Online Resource
    ISSN: 0022-3670 , 1520-0485
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2021
    detail.hit.zdb_id: 2042184-9
    detail.hit.zdb_id: 184162-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Journal of Physical Oceanography, American Meteorological Society, Vol. 50, No. 1 ( 2020-01), p. 111-132
    Abstract: We present observations of shoaling nonlinear internal bores off the coast of central California. The dataset includes 15 moorings deployed during September–October 2017 and cross-shore shipboard surveys. We describe the cross-shore structure and evolution of large-amplitude internal bores as they transit from 9 km (100-m depth) to 1 km offshore (10 m). We observe that two bores arrive each semidiurnal period, both propagating from the southwest; of the total, 72% are tracked to the 10-m isobath. The bore speeds are subtidally modulated, but there is additional bore-to-bore speed variability that is unexplained by the upstream stratification. We quantify temporal and cross-shore variability of the waveguide (the background conditions through which bores propagate) by calculating the linear longwave nonrotating phase speed c o and using the nonlinearity coefficient of the Korteweg–de Vries equation α as a metric for stratification. Bore fronts are generally steeper when α is positive and are more rarefied when α is negative, and we observe the bore’s leading edge to rarefy from a steep front when α is positive offshore and negative inshore. High-frequency α fluctuations, such as those nearshore driven by wind relaxations, contribute to bore-to-bore variability of the cross-shore evolution during similar subtidal waveguide conditions. We compare observed bore speeds with c o and the rotating group velocities c g , concluding that observed speeds are always faster than c g and are slower than c o at depths greater than 32 m and faster than c o at depths of less than 32 m. The bores maintain a steady speed while transiting into shallower water, contrary to linear estimates that predict bores to slow.
    Type of Medium: Online Resource
    ISSN: 0022-3670 , 1520-0485
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2020
    detail.hit.zdb_id: 2042184-9
    detail.hit.zdb_id: 184162-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Bulletin of the American Meteorological Society, American Meteorological Society, Vol. 98, No. 11 ( 2017-11-01), p. 2429-2454
    Abstract: Diapycnal mixing plays a primary role in the thermodynamic balance of the ocean and, consequently, in oceanic heat and carbon uptake and storage. Though observed mixing rates are on average consistent with values required by inverse models, recent attention has focused on the dramatic spatial variability, spanning several orders of magnitude, of mixing rates in both the upper and deep ocean. Away from ocean boundaries, the spatiotemporal patterns of mixing are largely driven by the geography of generation, propagation, and dissipation of internal waves, which supply much of the power for turbulent mixing. Over the last 5 years and under the auspices of U.S. Climate Variability and Predictability Program (CLIVAR), a National Science Foundation (NSF)- and National Oceanic and Atmospheric Administration (NOAA)-supported Climate Process Team has been engaged in developing, implementing, and testing dynamics-based parameterizations for internal wave–driven turbulent mixing in global ocean models. The work has primarily focused on turbulence 1) near sites of internal tide generation, 2) in the upper ocean related to wind-generated near inertial motions, 3) due to internal lee waves generated by low-frequency mesoscale flows over topography, and 4) at ocean margins. Here, we review recent progress, describe the tools developed, and discuss future directions.
    Type of Medium: Online Resource
    ISSN: 0003-0007 , 1520-0477
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2017
    detail.hit.zdb_id: 2029396-3
    detail.hit.zdb_id: 419957-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    American Meteorological Society ; 2021
    In:  Journal of Physical Oceanography Vol. 51, No. 4 ( 2021-04), p. 1091-1111
    In: Journal of Physical Oceanography, American Meteorological Society, Vol. 51, No. 4 ( 2021-04), p. 1091-1111
    Abstract: We describe the spatiotemporal variability and vertical structure of turbulent Reynolds stresses (RSs) in a stratified inner shelf with an energetic internal wave climate. The RSs are estimated from direct measurements of velocity variance derived from bottom-mounted acoustic Doppler current profilers. We link the RSs to different physical processes, namely, internal bores, midwater shear instabilities within vertical shear events related to wind-driven subtidal along-shelf currents, and nonturbulent stresses related to incoming nonlinear internal wave (NLIW) trains. The typical RS magnitudes are O (0.01) Pa for background conditions, with diurnal pulses of O (0.1–1) Pa, and O (1) Pa for the NLIW stresses. A NLIW train is observed to produce a depth-averaged vertical stress divergence sufficient to accelerate water 20 cm s −1 in 1 h, suggesting NLIWs may also be important contributors to the depth-averaged momentum budget. The subtidal stresses show significant periodic variability and are O (0.1) Pa. Conditionally averaged velocity and RS profiles for northward/southward flow provide evidence for downgradient turbulent momentum fluxes, but also indicate departures from this expected regime. Estimates of the terms in the depth-averaged momentum equation suggest that the vertical divergence of the RSs are important terms in both the cross-shelf and along-shelf directions, with geostrophy also present at leading-order in the cross-shelf momentum balance. Among other conclusions, the results highlight that internal bores and shoaling NLIWs may also be important dynamical players in other inner shelves with energetic internal waves.
    Type of Medium: Online Resource
    ISSN: 0022-3670 , 1520-0485
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2021
    detail.hit.zdb_id: 2042184-9
    detail.hit.zdb_id: 184162-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    American Meteorological Society ; 2014
    In:  Journal of Physical Oceanography Vol. 44, No. 3 ( 2014-03-01), p. 850-869
    In: Journal of Physical Oceanography, American Meteorological Society, Vol. 44, No. 3 ( 2014-03-01), p. 850-869
    Abstract: The three-dimensional (3D) double-ridge internal tide interference in the Luzon Strait in the South China Sea is examined by comparing 3D and two-dimensional (2D) realistic simulations. Both the 3D simulations and observations indicate the presence of 3D first-mode (semi)diurnal standing waves in the 3.6-km-deep trench in the strait. As in an earlier 2D study, barotropic-to-baroclinic energy conversion, flux divergence, and dissipation are greatly enhanced when semidiurnal tides dominate relative to periods dominated by diurnal tides. The resonance in the 3D simulation is several times stronger than in the 2D simulations for the central strait. Idealized experiments indicate that, in addition to ridge height, the resonance is only a function of separation distance and not of the along-ridge length; that is, the enhanced resonance in 3D is not caused by 3D standing waves or basin modes. Instead, the difference in resonance between the 2D and 3D simulations is attributed to the topographic blocking of the barotropic flow by the 3D ridges, affecting wave generation, and a more constructive phasing between the remotely generated internal waves, arriving under oblique angles, and the barotropic tide. Most of the resonance occurs for the first mode. The contribution of the higher modes is reduced because of 3D radiation, multiple generation sites, scattering, and a rapid decay in amplitude away from the ridge.
    Type of Medium: Online Resource
    ISSN: 0022-3670 , 1520-0485
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2014
    detail.hit.zdb_id: 2042184-9
    detail.hit.zdb_id: 184162-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Journal of Physical Oceanography, American Meteorological Society, Vol. 51, No. 2 ( 2021-02), p. 611-631
    Abstract: Mode-1 internal tides can propagate far away from their generation sites, but how and where their energy is dissipated is not well understood. One example is the semidiurnal internal tide generated south of New Zealand, which propagates over a thousand kilometers before impinging on the continental slope of Tasmania. In situ observations and model results from a recent process-study experiment are used to characterize the spatial and temporal variability of the internal tide on the southeastern Tasman slope, where previous studies have quantified large reflectivity. As expected, a standing wave pattern broadly explains the cross-slope and vertical structure of the observed internal tide. However, model and observations highlight several additional features of the internal tide on the continental slope. The standing wave pattern on the sloping bottom as well as small-scale bathymetric corrugations lead to bottom-enhanced tidal energy. Over the corrugations, larger tidal currents and isopycnal displacements are observed along the trough as opposed to the crest. Despite the long-range propagation of the internal tide, most of the variability in energy density on the slope is accounted by the spring–neap cycle. However, the timing of the semidiurnal spring tides is not consistent with a single remote wave and is instead explained by the complex interference between remote and local tides on the Tasman slope. These observations suggest that identifying the multiple waves in an interference pattern and their interaction with small-scale topography is an important step in modeling internal energy and dissipation.
    Type of Medium: Online Resource
    ISSN: 0022-3670 , 1520-0485
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2021
    detail.hit.zdb_id: 2042184-9
    detail.hit.zdb_id: 184162-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...