GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Online Resource  (7)
  • American Association for the Advancement of Science (AAAS)  (7)
Material
  • Online Resource  (7)
Publisher
  • American Association for the Advancement of Science (AAAS)  (7)
Language
Years
Subjects(RVK)
  • 1
    Online Resource
    Online Resource
    American Association for the Advancement of Science (AAAS) ; 2007
    In:  Science Vol. 315, No. 5809 ( 2007-01-12), p. 214-217
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 315, No. 5809 ( 2007-01-12), p. 214-217
    Abstract: In principle, a complex assembly of strongly interacting electrons can self-organize into a wide variety of collective states, but relatively few such states have been identified in practice. We report that, in the close vicinity of a metamagnetic quantum critical point, high-purity strontium ruthenate Sr 3 Ru 2 O 7 possesses a large magnetoresistive anisotropy, consistent with the existence of an electronic nematic fluid. We discuss a striking phenomenological similarity between our observations and those made in high-purity two-dimensional electron fluids in gallium arsenide devices.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2007
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Association for the Advancement of Science (AAAS) ; 2001
    In:  Science Vol. 294, No. 5541 ( 2001-10-12), p. 329-332
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 294, No. 5541 ( 2001-10-12), p. 329-332
    Abstract: The concept of quantum criticality is proving to be central to attempts to understand the physics of strongly correlated electrons. Here, we argue that observations on the itinerant metamagnet Sr 3 Ru 2 O 7 represent good evidence for a new class of quantum critical point, arising when the critical end point terminating a line of first-order transitions is depressed toward zero temperature. This is of interest both in its own right and because of the convenience of having a quantum critical point for which the tuning parameter is the magnetic field. The relationship between the resultant critical fluctuations and novel behavior very near the critical field is discussed.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2001
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 326, No. 5951 ( 2009-10-16), p. 411-414
    Abstract: Sources of magnetic fields—magnetic monopoles—have so far proven elusive as elementary particles. Condensed-matter physicists have recently proposed several scenarios of emergent quasiparticles resembling monopoles. A particularly simple proposition pertains to spin ice on the highly frustrated pyrochlore lattice. The spin-ice state is argued to be well described by networks of aligned dipoles resembling solenoidal tubes—classical, and observable, versions of a Dirac string. Where these tubes end, the resulting defects look like magnetic monopoles. We demonstrated, by diffuse neutron scattering, the presence of such strings in the spin ice dysprosium titanate (Dy 2 Ti 2 O 7 ). This is achieved by applying a symmetry-breaking magnetic field with which we can manipulate the density and orientation of the strings. In turn, heat capacity is described by a gas of magnetic monopoles interacting via a magnetic Coulomb interaction.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2009
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    American Association for the Advancement of Science (AAAS) ; 2009
    In:  Science Vol. 325, No. 5946 ( 2009-09-11), p. 1360-1363
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 325, No. 5946 ( 2009-09-11), p. 1360-1363
    Abstract: Low-temperature phase transitions and the associated quantum critical points are a major field of research, but one in which experimental information about thermodynamics is sparse. Thermodynamic information is vital for the understanding of quantum many-body problems. We show that combining measurements of the magnetocaloric effect and specific heat allows a comprehensive study of the entropy of a system. We present a quantitative measurement of the entropic landscape of Sr 3 Ru 2 O 7 , a quantum critical system in which magnetic field is used as a tuning parameter. This allows us to track the development of the entropy as the quantum critical point is approached and to study the thermodynamic consequences of the formation of a novel electronic liquid crystalline phase in its vicinity.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2009
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    American Association for the Advancement of Science (AAAS) ; 2004
    In:  Science Vol. 306, No. 5699 ( 2004-11-12), p. 1154-1157
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 306, No. 5699 ( 2004-11-12), p. 1154-1157
    Abstract: Condensed systems of strongly interacting electrons are ideal for the study of quantum complexity. It has become possible to promote the formation of new quantum phases by explicitly tuning systems toward special low-temperature quantum critical points. So far, the clearest examples have been appearances of superconductivity near pressure-tuned antiferromagnetic quantum critical points. We present experimental evidence for the formation of a nonsuperconducting phase in the vicinity of a magnetic field–tuned quantum critical point in ultrapure crystals of the ruthenate metal Sr 3 Ru 2 O 7 , and we discuss the possibility that the observed phase is due to a spin-dependent symmetry-breaking Fermi surface distortion.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2004
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    American Association for the Advancement of Science (AAAS) ; 2005
    In:  Science Vol. 309, No. 5739 ( 2005-08-26), p. 1330-1331
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 309, No. 5739 ( 2005-08-26), p. 1330-1331
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2005
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    American Association for the Advancement of Science (AAAS) ; 2017
    In:  Science Advances Vol. 3, No. 2 ( 2017-02-03)
    In: Science Advances, American Association for the Advancement of Science (AAAS), Vol. 3, No. 2 ( 2017-02-03)
    Abstract: A major area of interest in condensed matter physics is the way electrons in correlated electron materials can self-organize into ordered states, and a particularly intriguing possibility is that they spontaneously choose a preferred direction of conduction. The correlated electron metal Sr 3 Ru 2 O 7 has an anomalous phase at low temperatures that features strong susceptibility toward anisotropic transport. This susceptibility has been thought to indicate a spontaneous anisotropy, that is, electronic order that spontaneously breaks the point-group symmetry of the lattice, allowing weak external stimuli to select the orientation of the anisotropy. We investigate further by studying the response of Sr 3 Ru 2 O 7 in the region of phase formation to two fields that lift the native tetragonal symmetry of the lattice: in-plane magnetic field and orthorhombic lattice distortion through uniaxial pressure. The response to uniaxial pressure is surprisingly strong: Compressing the lattice by ~0.1% induces an approximately 100% transport anisotropy. However, neither the in-plane field nor the pressure phase diagrams are qualitatively consistent with spontaneous symmetry reduction. Instead, both are consistent with a multicomponent order parameter that is likely to preserve the point-group symmetry of the lattice, but is highly susceptible to perturbation.
    Type of Medium: Online Resource
    ISSN: 2375-2548
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2017
    detail.hit.zdb_id: 2810933-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...