GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Online Resource  (4)
  • American Association for the Advancement of Science (AAAS)  (4)
  • 1
    Online Resource
    Online Resource
    American Association for the Advancement of Science (AAAS) ; 2016
    In:  Science Vol. 353, No. 6299 ( 2016-08-05), p. 547-548
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 353, No. 6299 ( 2016-08-05), p. 547-548
    Abstract: With China having the largest fossil fuel CO 2 emissions today and the United States being higher in per capita emissions (see related energy consumption in the first figure), these countries have a strong mutual interest in stabilizing climate and reducing air pollution. Yet even Germany, despite sizable subsidies of renewable energies, gets only a small fraction of energy from them (see the first figure). Historically the fastest growth of low-carbon power occurred during scale-up of national nuclear power programs (see the second figure). Some studies project that a doubling to quadrupling of nuclear energy output is required in the next few decades, along with a large expansion of renewable energy, in order to achieve deep cuts in fossil fuel use while meeting the growing global demand for affordable, reliable energy ( 1 – 4 ). In light of this large-scale energy and emissions picture, climate and nuclear energy experts from China and the United States convened (see Acknowledgments) to consider the potential of increased cooperation in developing advanced nuclear technologies.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2016
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Association for the Advancement of Science (AAAS) ; 2018
    In:  Science Advances Vol. 4, No. 8 ( 2018-08-03)
    In: Science Advances, American Association for the Advancement of Science (AAAS), Vol. 4, No. 8 ( 2018-08-03)
    Abstract: Agricultural and industrial activities have increased atmospheric nitrogen (N) deposition to ecosystems worldwide. N deposition can stimulate plant growth and soil carbon (C) input, enhancing soil C storage. Changes in microbial decomposition could also influence soil C storage, yet this influence has been difficult to discern, partly because of the variable effects of added N on the microbial enzymes involved. We show, using meta-analysis, that added N reduced the activity of lignin-modifying enzymes (LMEs), and that this N-induced enzyme suppression was associated with increases in soil C. In contrast, N-induced changes in cellulase activity were unrelated to changes in soil C. Moreover, the effects of added soil N on LME activity accounted for more of the variation in responses of soil C than a wide range of other environmental and experimental factors. Our results suggest that, through responses of a single enzyme system to added N, soil microorganisms drive long-term changes in soil C accumulation. Incorporating this microbial influence on ecosystem biogeochemistry into Earth system models could improve predictions of ecosystem C dynamics.
    Type of Medium: Online Resource
    ISSN: 2375-2548
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2018
    detail.hit.zdb_id: 2810933-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 372, No. 6543 ( 2021-05-14), p. 689-691
    Abstract: There is great disparity in the way we think about and address different sources of environmental infection. Governments have for decades promulgated a large amount of legislation and invested heavily in food safety, sanitation, and drinking water for public health purposes. By contrast, airborne pathogens and respiratory infections, whether seasonal influenza or COVID-19, are addressed fairly weakly, if at all, in terms of regulations, standards, and building design and operation, pertaining to the air we breathe. We suggest that the rapid growth in our understanding of the mechanisms behind respiratory infection transmission should drive a paradigm shift in how we view and address the transmission of respiratory infections to protect against unnecessary suffering and economic losses. It starts with a recognition that preventing respiratory infection, like reducing waterborne or foodborne disease, is a tractable problem.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2021
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    American Association for the Advancement of Science (AAAS) ; 2016
    In:  Science Vol. 354, No. 6316 ( 2016-12-02), p. 1112-1113
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 354, No. 6316 ( 2016-12-02), p. 1112-1113
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2016
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...