GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Online Resource  (176)
  • Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences  (176)
  • 1
    Online Resource
    Online Resource
    Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences ; 2010
    In:  Acta Physica Sinica Vol. 59, No. 3 ( 2010), p. 2104-
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 59, No. 3 ( 2010), p. 2104-
    Abstract: Optical transmission of quartz glass is measured during loading and unloading process,and the stress was kept below their Hugoniot elastic limit. The results show that the quartz glass maintains good transparency for more than 15 μs under loading processes of 18 GPa,then it starts to lose its transparency about 07 μs after unloading,with 30% decrease of transmittance. This phenomenon,which reflects the growth and evolution of failure induced by unloading process in quartz glass,has been explained reasonably by the growth of spherical particles and the scattering model. The results are different from the explanation of liquid-solid phase transition given in literature[J. Chem. Phys. 2004,121 9050]. This paper is significant for studying the transparency of other transparent material.
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2010
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 65, No. 9 ( 2016), p. 097801-
    Abstract: The effective wavelength scaling theory for optical antennas indicates that an optical antenna does not respond to the wavelength of incident electromagnetic wave, but to a shorter effective wavelength which depends on the plasma wavelength and optical dielectric permittivity of the antenna material, and also on the geometric structure of the antenna. In this paper, based on the effective wavelength scaling theory for optical antennas and on the assumption that metallic carbon nanotube (CNT) can be described by a free electron gas according to the Drude model, the general relationship between effective wavelength and dielectric properties of the antenna material for a metallic carbon nanotube optical antenna is derived. According to this relationship, the investigation into the effective wavelength that a metallic CNT optical antenna responds to can be transferred to easier theoretical calculation for the dielectric properties of CNT, instead of exploring its plasma wavelength. Following first-principle calculations for dielectric properties of CNT with 4 diameter, the effective wavelength versus incident wavelength for each of two types of metallic 4 CNT antennas is investigated. In addition, the resonance characteristics of metallic 4 CNT dipole antennas are analyzed. It is shown that the effective wavelength approximately follows a linear relationship with wavelength of the incident light for the 4 metallic CNT antenna, which is consistent with the wavelength scaling theory. In addition, CNT optical antenna has good wavelength scaling performance compared with nano-antennas made of conventional metals like silver and gold; hence metallic CNTs as optical antennas are beneficial for constructing more compact devices. Moreover, according to the simulation results of resonance characteristics of metallic 4 CNT dipole antennas, there are several 4 metallic CNT dipole antennas with small difference in length meeting the resonance conditions for incident electromagnetic wave with a certain frequency, while there are one or more corresponding resonant modes in the optical and near-infrared spectral range concerned for a 4 metallic CNT dipole antenna with fixed length. Therefore, it is easier to meet the resonance conditions for CNT optical antenna than for conventional metal optical antenna, which also arises from the superior wavelength scaling ability of CNT. These advantages of CNT can help to miniaturize the optical antenna and improve the efficiency of energy conversion of the incident radiation in the optical and near-infrared spectral range. Reliability of the assumption and the theoretical process in this paper are validated by comparing the simulation results with existing investigations. Therefore, the theoretical investigations in this paper may provide a new approach to studying metallic CNT optical antennas. The simulation results also demonstrate the potential applications of CNT optical antenna, including solar energy harvesting and conversion.
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2016
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 69, No. 24 ( 2020), p. 246201-
    Abstract: The knowledge of phase transition of material under dynamic loading is an important area of research in inertial confinement fusion and material science. Though the shock-induced phase transitions of various materials over a broad pressure range have become a field of study for decades, the loading strain rates in most of these experiments is not more than 〈inline-formula〉〈tex-math id="M2"〉\begin{document}$ {10^{6}}\;{{\rm{s}}^{ - 1}} $\end{document}〈/tex-math〉〈alternatives〉〈graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="24-20200929_M2.jpg"/〉〈graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="24-20200929_M2.png"/〉〈/alternatives〉〈/inline-formula〉. However, in contrast with the strain rate range where the phase diagram is a good predictor of the crystal structure of a material, at higher strain rate (〈inline-formula〉〈tex-math id="M3"〉\begin{document}$ 〉 {10^{6}}\;{{\rm{s}}^{ - 1}} $\end{document}〈/tex-math〉〈alternatives〉〈graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="24-20200929_M3.jpg"/〉〈graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="24-20200929_M3.png"/〉〈/alternatives〉〈/inline-formula〉) the phase diagram measured can be quite different not only in shifting the boundary line between various phases, but also in giving a different sequence of crystal structure. High-power laser facility can drive shock wave and simultaneously provide a precisely synchronized ultra-short and ultra-intense X-ray source. Here, based on the Prototype laser facility, an 〈i〉in situ〈/i〉 X-ray diffraction platform for diagnosing shock-induced phase transition of polycrystalline material is established. The 〈i〉in situ〈/i〉 observation of material phase transition under high-strain-rate shock loading is carried out with typical metals of vanadium and iron. Diffraction results are consistent with vanadium remaining in the body-centered-cubic structure up to 69 GPa, while iron transforms from the body-centered-cubic structure into hexagonal-close-packed structure at 159 GPa. The compressive properties of vanadium and iron obtained in 〈i〉in situ〈/i〉 X-ray diffraction experiment are in good agreement with their macroscopic Hugonoit curves. The decrease in the lattice volume over the pressure step period yields a strain rate on the order of 〈inline-formula〉〈tex-math id="M4"〉\begin{document}$ {10^{8}} - {10^{9}}\;{{\rm{s}}^{ - 1}} $\end{document}〈/tex-math〉〈alternatives〉〈graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="24-20200929_M4.jpg"/〉〈graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="24-20200929_M4.png"/〉〈/alternatives〉〈/inline-formula〉. The available of the presented 〈i〉in situ〈/i〉 X-ray diffraction plateform offers the potential to extend our understanding of the kinetics of phase transition in polycrystalline under high-pressure high-strain-rate shock compression.
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2020
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 71, No. 23 ( 2022), p. 237501-
    Abstract: Fe-based amorphous and nanocrystalline alloys are considered as the preferred dual-green energy-saving materials due to their unique magnetic properties, such as high permeability, low coercivity, and near-zero saturation magnetostriction. As such, they have received extensive attention in applications like magnetic core material for high-frequency transformers, common model chokes, ground fault interrupters, and rotors in motors, over the past decades. In this work, Fe〈sub〉64.8〈/sub〉Co〈sub〉7.2〈/sub〉Nb〈sub〉4〈/sub〉Si〈sub〉4.8〈/sub〉B〈sub〉19.2〈/sub〉 (in atom percent) amorphous alloy ribbons are prepared by using the single roller quenching method, then subsequently subjected to multi-field coupling heating treatment in the air which includes heating by Joule heating effect and tensile stress field. Furthermore, the longitudinally driven giant magneto-impedance effect and magnetic domain structures of ribbons are observed by using 4294A impedance analyzer and magnetic force microscopy, respectively. The magneto-crystalline anisotropy field and stress anisotropy field of ribbons are analyzed by using X-ray diffraction, random anisotropy model, and numerical fitting. Meanwhile, the concept of magnetic anisotropy competing factor (〈i〉k〈/i〉) is proposed, from the viewpoint of magnetic anisotropy, a mechanism for regulating giant magneto-impedance effect of ribbons prepared with multi-field coupling is studied. It is found that the longitudinally driven giant magneto-impedance effect gradually transforms from the single peak to dome-like with tensile stress increasing. However, a spike and dome-like giant magneto-impedance effect appears during such transformation, which is composed of two parts: spike-like top and dome-like base. Based on the magnetic domain structure of ribbons, it is found that the typical stress-annealed transversal magnetic domain structure is observed in ribbons of 〈inline-formula〉〈tex-math id="Z-20221115160531"〉\begin{document}$k \leqslant 0.147$\end{document}〈/tex-math〉〈alternatives〉〈graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="23-20221376_Z-20221115160531.jpg"/〉〈graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="23-20221376_Z-20221115160531.png"/〉〈/alternatives〉〈/inline-formula〉, while nucleation and splitting phenomenon of new domains are observed at the transversal magnetic domain wall in ribbons of 〈i〉k〈/i〉 〉 0.147. Both longitudinally driven giant magneto-impedance effect and domain structures provide evidence to support the competing inhibition effect of magnetic anisotropy which exists in Fe-based alloy ribbon. Therefore, it is suggested that Fe-based alloys exhibit excellent stress-sensitive properties that can be understood by the competing inhibition effects of magnetic anisotropy. It is further shown that the competing inhibition effect of magnetic anisotropy is the main reason for regulating the giant magneto-impedance effect of soft magnetic materials. This multi-field coupling Fe-based alloy has good application prospects in regulating magnetic properties of magnetic materials.
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2022
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 59, No. 7 ( 2010), p. 4761-
    Abstract: To solve the method of measuring the viscosity of related substance at high pressures and high temperatures, Sakharov has proposed an experimental method of small disturbance in shock wave. However, the quantitative relation between the disturbance amplitude damping and viscosity in Sakharov flow field has not been given by theory. In this paper, the propagation of complex flow in Al, the development of relative disturbance amplitude on sinusoidal shock front, and the effect of viscosity on it are studied, and the relation between the relative distance of zero-point on the disturbance amplitude damping curve and viscosity is given. Compared with Zaidel’s uniform flow model and Millers’ nonuniform flow model, our Sakharov flow is close to real experiment. From our numerical analysis method, Sakharov small disturbance experiment can give a credible viscosity coefficient. We analyze the experimental data of Mineev again, and find the effective viscosity coefficient of Al at shock pressure 31 GPa and strain rate 2×106 s-1 should be modified by 1100 Pa·s, which is half of the former analytic result.
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2010
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences ; 2008
    In:  Acta Physica Sinica Vol. 57, No. 12 ( 2008), p. 7885-
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 57, No. 12 ( 2008), p. 7885-
    Abstract: MgxZn1-xO has been an object of intense study as a novel photo-electronic function material in recent years. Mg0.25Zn0.75O film was prepared on quartz glass substrate by sol-gel method. Structure and optical properties of Mg0.25Zn0.75O film were studied both in theory and by experiment. The result indicates that Mg0.25Zn0.75O film has hexagonal wurtzite structure. The film is homogeneous and the average grain size is about 20nm. Absorption spectrum indicates that the absorption edge starts at 360nm and the corresponding forbidden band width is 3.83eV. The luminescence spectrum of the sample is composed of three peaks at 384.9, 444.8 and 533.6nm respectively and the peak of excitation spectrum is at 378nm. The crystal lattice of Mg0.25Zn0.75O film is increased, the forbidden band width is broadened and the ultraviolet and blue-green luminescence peaks red-shift about 59, 14 and 12.6nm, respectively, due to the interstitial defects introduced by the surplus Mg ions.
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2008
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences ; 2015
    In:  Acta Physica Sinica Vol. 64, No. 16 ( 2015), p. 165201-
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 64, No. 16 ( 2015), p. 165201-
    Abstract: Magnetic reconnection (MR) is a universal physical process in plasma, in which the stored magnetic energy is converted into high-velocity flows and energetic particles. It is believed that MR plays an important role in many plasma phenomena such as solar fare, gamma-ray burst, fusion plasma instabilities, etc.. The process of MR has been studied in detail by dedicated magnetic-driven experiments. Here, we report the measurements of magnetic reconnection driven by Shenguang II lasers and Gekko XVII lasers. A collimated plasma jet is observed along the direction perpendicular to the reconnection plane with the optical probing. The present jet is very different from traditional magnetic reconnection outflows as known in the two-dimensional reconnection plane. In our experiment, by changing the delay of optical probing beam, we measure the temporal evolution of jet from 0.5 ns to 2.5 ns and its velocity around 400 km/s is deduced. Highcollimated jet is also confirmed by its strong X-ray radiation recorded by an X-ray pinhole camera. With the help of optical interferograms we calculate the jet configuration and its density distribution by using Abel inverting technique. A magnetic spectrometer with an energy range from hundred eV up to one MeV is installed in front of the jet, in the direction perpendicular to the reconnection plane, to measure the accelerated electrons. Two cases are considered for checking the acceleration of electrons. The results show that more accelerated electrons can be found in the reconnection case than in the case without reconnection. We propose that the formation and collimation of the plasma jet, and the electron energy spectrum may be possible directly influenced by the reconnection electric field, which is very important for understanding the energy conversion in the process of MR and establishment of the theoretical model. Finally the electron energy spectra of three different materials Al, Ta and Au are also shown in our work. The results indicate that the higher atomic number material can obtain a better signal-noise ratio, which provides some helpful references for our future work.
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2015
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 63, No. 2 ( 2014), p. 027303-
    Abstract: In the fabrication of micrometer-sized structures from an epitaxial topological insulator thin film with photolithography, the film is usually deteriorated by the chemicals used in the process. By molecular beam epitaxy of (BixSb1-x)2Te3 topological insulator onto Hall bar-shaped plateaus pre-lithographed on SrTiO3 substrate, we have directly prepared Hall bar devices of epitaxial topological insulator thin film, avoiding the degradation of film quality in photolithography. Atomic force microscope and transport measurements have demonstrated that the Hall bar devices have the similar properties as that of (BixSb1-x)2Te3 films epitaxied on ordinary SrTiO3 substrates. The new microfabrication method can not only help to realize various novel quantum phenomena predicted in topological insulators but be applied to other epitaxial low-dimensional systems as well.
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2014
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 71, No. 16 ( 2022), p. 164206-
    Abstract: GdScO〈sub〉3〈/sub〉 and Yb:GdScO〈sub〉3〈/sub〉 single crystals are grown by the chzochralski method in nitrogen atmosphere, and they are characterized by X-ray diffraction(XRD), Raman spectra and transmission spectra . Their lattice parameters, atomic coordinates and temperature factors are determined by Rietveld refinement. It is found that the cell volume of GdScO〈sub〉3〈/sub〉 and Yb:GdScO〈sub〉3〈/sub〉 annealed in air atmosphere increase, but after these sample are annealed in H〈sub〉2〈/sub〉 atmosphere their cell volumes decrease. Based on these results, we demonstrate that the crystal grown in nitrogen atmosphere has interstitial oxygen atoms, and the number of interstitial oxygen atoms in the sample annealed in air atmosphere increases, but that annealed in H〈sub〉2〈/sub〉 atmosphere decreases. The Raman peaks of 155 cm〈sup〉–1〈/sup〉, 298 cm〈sup〉–1〈/sup〉, 351 cm〈sup〉–1〈/sup〉 of GdScO〈sub〉3〈/sub〉 are weakened or even disappear when Yb〈sup〉3+〈/sup〉 ions are doped into it. The Raman spectra of the Yb:GdScO〈sub〉3〈/sub〉 unannealed and annealed in H〈sub〉2〈/sub〉 and air atmosphere are nearly consistent with each other, which indicates that Raman spectrum is insensitive to the defects such as oxygen interstitial caused by annealing. It is suggested that the optical loss of GdScO〈sub〉3〈/sub〉 in the visible wavelength originates mainly from the defect energy level absorption of oxygen interstitial, and transmissivity of Yb:GdScO〈sub〉3〈/sub〉 increases when it is annealed in hydrogen atmosphere, which results from the fact that ytterbium ion can reduce some interstitial oxygen atoms. When GdScO〈sub〉3〈/sub〉 and Yb:GdScO〈sub〉3〈/sub〉 are annealed in air or hydrogen atmosphere, the optical absorption loss of GdScO〈sub〉3〈/sub〉 and Yb:GdScO〈sub〉3〈/sub〉 in a wavelength range of 1000–3000 nm increase due to the trap level produced near the conduction or valence band. The effect on structure and spectral properties of Yb:GdScO〈sub〉3〈/sub〉 and GdScO〈sub〉3〈/sub〉 are explored preliminarily, which is useful for further studying and optimizing laser performance of rare earth doped GdScO〈sub〉3〈/sub〉 crystal.
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2022
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 73, No. 2 ( 2024), p. 026104-
    Abstract: The key material issue for the commercialization of advanced lead cooled fast reactors and accelerator driven subcritical systems is the compatibility between structural materials and lead based coolants. Structural steel materials require excellent corrosion resistance in high-temperature liquid lead bismuth eutectic (LBE) alloy. Aluminum forming austenitic steel (AFA steel) has excellent corrosion resistance in extreme environments due to its ability to form an Al 〈 sub 〉 2 〈 /sub 〉 O 〈 sub 〉 3 〈 /sub 〉 film on its surface. However, excessively high Ni elements are more easily dissolved or oxidized in LBE than Fe and Cr elements. Therefore, this work investigates the effect of reducing Ni element composition (25-Ni steel and 18-Ni steel) on the corrosion resistance of steel in LBE. Surface treatment can protect the substrate from corrosion to some extent, so herein we explore whether it has a protective effect on AFA steel in LBE by generating Al 〈 sub 〉 2 〈 /sub 〉 O 〈 sub 〉 3 〈 /sub 〉 through high-temperature pre oxidation. The morphology and structure of the oxide layer of AFA steel corroded for 600 h in LBE with saturated dissolved oxygen at 550 ℃ are characterized by scanning electron microscope (SEM), energy dispersive spectrometer (EDS), X-ray diffraction (XRD), and other technologies. The results indicate that the oxide film formed after corrosion of 18-Ni steel is thinner than that after corrosion of 25-Ni steel. Performing high-temperature pre oxidation is beneficial to forming a protective Al 〈 sub 〉 2 〈 /sub 〉 O 〈 sub 〉 3 〈 /sub 〉 oxide film on the surface of the sample, thereby reducing the thickness of the oxide layer and improving the material’s LBE corrosion resistance. The reduction in thickness of the oxide layer generated after pre oxidation of 18-Ni steel is greater than that of 25-Ni steel, so the anti-corrosion effect of 18-Ni steel after pre oxidation is better than that of 25-Ni steel.
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2024
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...