GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Online Resource  (312)
  • AIP Publishing  (312)
Material
  • Online Resource  (312)
Publisher
  • AIP Publishing  (312)
Language
Subjects(RVK)
  • 1
    Online Resource
    Online Resource
    AIP Publishing ; 2014
    In:  Journal of Applied Physics Vol. 116, No. 15 ( 2014-10-21)
    In: Journal of Applied Physics, AIP Publishing, Vol. 116, No. 15 ( 2014-10-21)
    Abstract: Photonic crystals with porous features not only provide the capability to control light but also enable structural colors that are environmentally sensitive. Here, we report a novel kind of tin oxide-based photonic crystal featuring periodically arranged air pores fabricated by the periodic anodization of tin foil. The existence of a photonic band gap in the fabricated structure is verified by its vivid color, and its reflective spectra which are responsive to environmental stimuli. Furthermore, the sample colors (i.e., the photonic band gap positions) can be easily adjusted by manipulating the anodization parameters. The theoretical modeling results of these tin oxide photonic crystals agree well with the reported experimental ones.
    Type of Medium: Online Resource
    ISSN: 0021-8979 , 1089-7550
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2014
    detail.hit.zdb_id: 220641-9
    detail.hit.zdb_id: 3112-4
    detail.hit.zdb_id: 1476463-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Applied Physics Letters, AIP Publishing, Vol. 121, No. 9 ( 2022-08-29)
    Abstract: Materials with in-plane electrical anisotropy have great potential for designing artificial synaptic devices. However, natural materials with strong intrinsic in-plane electrical anisotropy are rare. We introduce a simple strategy to produce extremely large electrical anisotropy via grating gating of a semiconductor two-dimensional electron gas (2DEG) of AlGaN/GaN. We show that periodically modulated electric potential in the 2DEG induces in-plane electrical anisotropy, which is significantly enhanced in a magnetic field, leading to an ultra large electrical anisotropy. This is induced by a giant positive magnetoresistance and a giant negative magnetoresistance under two orthogonally oriented in-plane current flows, respectively. This giant electrical anisotropy is in situ tunable by tailoring both the grating gate voltage and the magnetic field. Our semiconductor device with controllable giant electrical anisotropy will stimulate new device applications, such as multi-terminal memtransistors and bionic synapses.
    Type of Medium: Online Resource
    ISSN: 0003-6951 , 1077-3118
    RVK:
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2022
    detail.hit.zdb_id: 211245-0
    detail.hit.zdb_id: 1469436-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: AIP Advances, AIP Publishing, Vol. 8, No. 11 ( 2018-11-01)
    Abstract: In this paper, a mathematical physics model is set up to study dielectric constant profile of aqueous solvent in ionic solution, to revise Brownian dynamics simulation in ionic solution by considering time-variant dielectric constant profile with change in ion positions, and to study the effect of high-intensity electric pulses on the profile. The validation of the model is confirmed with verification calculations. By means of the proposed model, dielectric constant profiles in calcium chloride and sodium chloride solutions and their response to pulses are simulated. Based on numerical results, dielectric constants of aqueous solvent spatially vary instead of being the same value in ionic solutions. And the profiles are variant with time due to ion motion in solutions. From the profiles, overall dielectric constant in calcium chloride solution is lower than that in sodium chloride solution. And overall dielectric constant decreases with increment of solution concentration. In addition, the results show that influence on the profiles depends on solution concentration and field intensity of the pulse. The profile in solutions with low concentration is more vulnerable to the pulse than that with high concentration. And overall dielectric constant decreases dramatically as field intensity increases. Those understandings provide basis for application of pulses in biomedical engineering at the molecular level. Meanwhile, pulse radiation provides a potential way to constrain water molecules at room temperature reflected by significantly reducing dielectric constant, and to lower absorption loss of electromagnetic field in millimeter and far infrared band.
    Type of Medium: Online Resource
    ISSN: 2158-3226
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2018
    detail.hit.zdb_id: 2583909-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Physics of Plasmas, AIP Publishing, Vol. 28, No. 6 ( 2021-06-01)
    Abstract: Great efforts have been made to create a bright K-shell source using the thin metal cylindrical cavities in the past few decades. Several metal materials such as titanium (Ti), iron, and so on have been tested for high x-ray conversion efficiency mainly at the OMEGA and NIF laser facilities. Recently, x-ray sources in Ti K-shell transition energy range were investigated at the Shenguang-III prototype laser facility with ∼5 kJ laser energy. The experiments were aimed to reproduce the previous ones at OMEGA, but with an extraordinarily small volume of cylindrical cavity and detailed characterizations of the x-ray source. The cavities were 800 μm inner diameter, 800 μm length, and 30 μm thick plastic tubes supporting 1 μm thick Ti. Seven laser beams were focused to 200 μm diameter. The combination of the small cavity volume and the focused laser spots is intended to improve the electron temperature with limited laser energy since the electron temperature is a key issue for high x-ray conversion efficiency. Thomson scattering was adopted to experimentally probe the electron temperatures at special time and space zones as well as the average temperature obtained from the Ti K-shell spectrum. The evolutions of the electron temperature and density are predicted by the radiation hydrodynamic simulation. A top view and two photon energy bands of x-ray source images provide a way to directly observe the plasma movement toward the cavity axis and distinguish the different emission mechanisms between the Ti K-shell and lower energy x rays. Six Higher-energy x-ray detectors located at different angles were used to record the Ti K-shell x-ray emission and demonstrate its isotropic feature. The characteristics of the x-ray radiate intensity including the time evolution, the angular distribution, and the total yields for both the photon energy regions above and below 4 keV are compared between the cavity and planar targets. Obviously, different behaviors were found between the two photon energy regions and the two types of targets. The x-ray conversion efficiency of the Ti cylinder was determined to be ∼4% and ∼21% in 4π sr in the Ti K-shell (4–7 keV) and  & lt;4 keV range, respectively. The Ti K-shell conversion efficiency obtained in the present experiments is between the ones driven by 13.5 and 4.5 kJ laser energy at OMEGA.
    Type of Medium: Online Resource
    ISSN: 1070-664X , 1089-7674
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2021
    detail.hit.zdb_id: 1472746-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    AIP Publishing ; 2018
    In:  Journal of Applied Physics Vol. 123, No. 21 ( 2018-06-07), p. 214901-
    In: Journal of Applied Physics, AIP Publishing, Vol. 123, No. 21 ( 2018-06-07), p. 214901-
    Type of Medium: Online Resource
    ISSN: 0021-8979 , 1089-7550
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2018
    detail.hit.zdb_id: 220641-9
    detail.hit.zdb_id: 3112-4
    detail.hit.zdb_id: 1476463-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Review of Scientific Instruments, AIP Publishing, Vol. 94, No. 10 ( 2023-10-01)
    Abstract: Neutron scattering instruments play an important role in studying the inner structure of materials. A neutron beam monitor is a detector commonly used in a neutron scattering instrument. The detection efficiency for most neutron beam monitors is quite low (10−4–10−6). However, in some experiments with a low neutron flux, such as small angle neutron scattering (SANS) and inelastic neutron scattering experiments, a neutron beam monitor with a higher detection efficiency (∼1% for thermal neutrons) is required to reduce the duration of the experiment. To meet this requirement, a ceramic gas electron multiplier-based neutron beam monitor equipped with a 1 µm 10B4C neutron converter was developed in this study. Its performance was determined both experimentally and in simulations. The detection efficiency in the wavelength range of 1.8–5.5 Å was measured experimentally and was confirmed by the simulation results. An algorithm based on event selection and position reconstruction was developed to improve the spatial resolution to about 1 mm full-width-half-maximum. The wavelength spectrum was measured in beamline 20 (BL20) and agreed well with the results obtained using a commercial monitor. The maximum counting rate was 1.3 MHz. The non-uniformity over the whole 100 × 100 mm2 active area was determined to be 1.4%. Due to the excellent performance of this monitor, it has been used in several neutron instruments, such as the SANS and the High-Energy Direct-Geometry Inelastic Spectrometer instruments in the China spallation neutron source.
    Type of Medium: Online Resource
    ISSN: 0034-6748 , 1089-7623
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2023
    detail.hit.zdb_id: 209865-9
    detail.hit.zdb_id: 1472905-2
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    AIP Publishing ; 2000
    In:  Journal of Applied Physics Vol. 87, No. 9 ( 2000-05-01), p. 4819-4821
    In: Journal of Applied Physics, AIP Publishing, Vol. 87, No. 9 ( 2000-05-01), p. 4819-4821
    Abstract: A high-frequency longitudinally driven giant magnetoimpedance (GMI) effect has been measured in stress-annealed Fe73Cu1Nb1.5V2Si13.5B9 nanocrystalline ribbons. Based on how the impedance phase varies with the external magnetic field, it becomes clear that the imaginary part of the complex permeability, μ″, which is related to magnetic losses, plays an important role in the high-frequency longitudinally driven GMI effect. The transverse anisotropy field Hk can be readily determined by a sharp minimum in the curve of the impedance phase as a function of the external magnetic field. This provides a new method for measuring the magnetic anisotropy field in such systems.
    Type of Medium: Online Resource
    ISSN: 0021-8979 , 1089-7550
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2000
    detail.hit.zdb_id: 220641-9
    detail.hit.zdb_id: 3112-4
    detail.hit.zdb_id: 1476463-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: AIP Advances, AIP Publishing, Vol. 7, No. 5 ( 2017-05-01)
    Abstract: Ferromagnetic phase of Mn-Al exhibits great potential in the rare-earth free permanent magnetic materials due to its high magnetocrystalline anisotropy, high magnetization, high Curie temperature and low cost. In this work, the strip casting technique was applied to prepare MnAl magnetic phase. X-ray diffraction and energy dispersive X-ray analyses indicate that the as-prepared Mn54Al46 strip sample consists of pure τ-MnAl magnetic phase. It is found that the composition of Mn54Al46 is suitable to prepare τ-MnAl phase during the strip casting process. The Mn54Al46 strip sample synthesized through the strip casting exhibits a fairly high magnetization of 114 emu/g under a field of 5 T, while the coercivity of iHc = 2.8 kOe, magnetization of M5T = 63.9 emu/g at room temperature can be obtained for Mn54Al46 powder sample. This preparation method can produce a large amount of τ-phase MnAl alloy and promote mass industrialized production.
    Type of Medium: Online Resource
    ISSN: 2158-3226
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2017
    detail.hit.zdb_id: 2583909-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    AIP Publishing ; 2000
    In:  Journal of Applied Physics Vol. 87, No. 9 ( 2000-05-01), p. 5263-5265
    In: Journal of Applied Physics, AIP Publishing, Vol. 87, No. 9 ( 2000-05-01), p. 5263-5265
    Abstract: Giant magnetoimpedance (GMI) was investigated from room temperature up to 823 K in an Fe-based nanocrystalline Fe73.0Cu1.0Nb2.5V1.0Si13.5B9.0 ribbon. With an increment of the measuring temperature (T), GMI shows notable enhancement followed by a declining dependence, yielding a maximum value around 603 K where the relative GMI is nearly four times that at room temperature. The field at the peak of the GMI vs Hdc curve decreases monotonically with T, but around T=603 K there superimposes a trough-shaped variation. The thermal evolution of the soft magnetic property and magnetic anisotropy is suggested to be responsible for the high-temperature GMI features. Discussion on the intergrain exchange magnetic coupling through the amorphous boundaries in the two-phase Fe-based nanocrystalline alloy is also given.
    Type of Medium: Online Resource
    ISSN: 0021-8979 , 1089-7550
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2000
    detail.hit.zdb_id: 220641-9
    detail.hit.zdb_id: 3112-4
    detail.hit.zdb_id: 1476463-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Chinese Journal of Chemical Physics, AIP Publishing, Vol. 36, No. 3 ( 2023-06-01), p. 265-271
    Abstract: Sum-frequency generation vibrational spectroscopy (SFG-VS) has been widely used for characterizing various interfaces. However, obtaining SFG signals with a high signal-to-noise ratio can be challenging for certain interfaces, such as those involving powder particles, which scatter the SFG light and make it difficult to obtain accurate spectra. To address these challenges, we developed a new approach using a z-cut α-quartz crystal as the substrate loaded with a very small amount of powder sample. This approach not only amplifies the SFG signal from particles through the interference of the electric field from the quartz crystal, but also allows for phase reference and normalization of the broadband infrared SFG spectrum. By distinguishing the different polarizations of the SFG light, we were able to separate and simultaneously collect the achiral and chiral SFG signals. We used the chiral SFG signal to normalize the achiral SFG intensity, thereby avoiding any potential changes to the interface caused by loading substances onto the quartz, as well as coincidence differences resulting from the instability of light at different moments. We demonstrated our method by measuring the adsorption of CH3OD on a quartz substrate loaded with MoC nanoparticles. Our approach produced a high signal-to-noise ratio SFG spectrum, regardless of the interface situation.
    Type of Medium: Online Resource
    ISSN: 1674-0068 , 2327-2244
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2023
    detail.hit.zdb_id: 2381472-X
    SSG: 6,25
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...