GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Online Resource  (489)
  • AIP Publishing  (489)
Material
  • Online Resource  (489)
Publisher
  • AIP Publishing  (489)
Language
Subjects(RVK)
  • 1
    In: Journal of Applied Physics, AIP Publishing, Vol. 122, No. 4 ( 2017-07-28)
    Abstract: Layered transition-metal dichalcogenides have been recently attracted a lot of attention because of their unique physical properties, such as extremely large and anisotropic magnetoresistance (MR) in WTe2. In this work, we observed the abnormally anisotropic MR on Td-MoTe2 crystal that is strongly dependent on the temperature, as well as the orientations of both magnetic field B and electric field E with respect to crystallographic axes of Td-MoTe2. When E//a-axis and B//c-axis, MR is parabolically dependent on B and is as high as 520% under 9 T and 2 K conditions; the MR is quasi-linearly dependent on B when E//a-axis and B//b-axis (E//b-axis and B//c-axis), and the corresponding MR is only 130% (220%); MR is initially parabolically dependent on B, then linearly on B, and finally shows a saturate trend under E//B//a-axis (or E//B//b-axis) conditions, and the MR is about 16% (30%). These anisotropic MR behaviors can be qualitatively explained by the features of the Fermi surface of Td-MoTe2. This work may demonstrate the rich anisotropic physical behavior in layered transition-metal dichalcognides.
    Type of Medium: Online Resource
    ISSN: 0021-8979 , 1089-7550
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2017
    detail.hit.zdb_id: 220641-9
    detail.hit.zdb_id: 3112-4
    detail.hit.zdb_id: 1476463-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Applied Physics Letters, AIP Publishing, Vol. 105, No. 6 ( 2014-08-11)
    Abstract: In this Letter, we studied the electrical transport, magnetic property, magnetoresistance and anomalous Hall properties of La-, Sm-, Ho-, and Dy-doped quasi-two dimensional K0.58RhO2 single crystals. At low temperature ( & lt;10 K), a significant magnetoresistance (36%) can be observed in these samples. Accordingly, the “glassy ferromagnetism” is revealed by temperature-dependent magnetization in these samples. The significant magnetoresistance is related to the granular ferromagnetism. The unconventional anomalous Hall effect is also observed in magnetic atoms doped samples. Our finding shields more light on the magnetic, magnetoresistance, and anomalous Hall properties of quasi-two-dimensional material systems doped with magnetic ions.
    Type of Medium: Online Resource
    ISSN: 0003-6951 , 1077-3118
    RVK:
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2014
    detail.hit.zdb_id: 211245-0
    detail.hit.zdb_id: 1469436-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: AIP Advances, AIP Publishing, Vol. 5, No. 8 ( 2015-08-01)
    Abstract: A series of crystals KxRhO2 (x = 0.72, 0.63, 0.55, 0.39, and 0.24) have been synthesized and their vibrational properties have been studied by first principles calculations, Raman spectroscopy, and inelastic neutron scattering. The measured vibrational spectra of KxRhO2 for x = 0.72 and 0.63 are consistent with the theoretical prediction for the stoichiometric KRhO2. For samples with x = 0.55, 0.39 and 0.24, extra vibrational modes have been observed and they are believed to be due to the symmetry reduction and the loss of translational symmetry induced by K disorder. The good agreement was found for the phonon density of states among the Raman spectroscopic observations, inelastic neutron scattering and the first principles calculations, as an evidence for the generation of structure disorder by K deficiency.
    Type of Medium: Online Resource
    ISSN: 2158-3226
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2015
    detail.hit.zdb_id: 2583909-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Applied Physics Letters, AIP Publishing, Vol. 105, No. 4 ( 2014-07-28)
    Abstract: Electrical property evolution of Bi2AE2Co2O8+δ single crystals (AE = Ca, Sr and Ba) is systematically explored. When AE changes from Ca to Ba, the electrical property of Bi2Ca2Co2O8+δ and Bi2Sr2Co2O8+δ demonstrates semiconductor-like properties. But Bi2Ba2Co2O8+δ shows the metallic behavior. Analysis of temperature-dependent resistance substantiates that from metallic Bi2Ba2Co2O8+δ to semiconductor-like Bi2Sr2Co2O8+δ can be attributed to Anderson localization. However the semiconductor behaviour of Bi2Sr2Co2O8+δ and Bi2Ca2Co2O8+δ is related to electronic correlations effect that is inferred by large negative magnetoresistance (∼70%). The theoretical electronic structures and valence X-ray photoemission spectroscopy substantiate that there is a relative large density of state around Fermi level in Bi2Ba2Co2O8+δ compared with other two compounds. It suggests that Bi2Ba2Co2O8+δ is more apt to be metal in this material system.
    Type of Medium: Online Resource
    ISSN: 0003-6951 , 1077-3118
    RVK:
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2014
    detail.hit.zdb_id: 211245-0
    detail.hit.zdb_id: 1469436-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Journal of Applied Physics, AIP Publishing, Vol. 124, No. 14 ( 2018-10-14)
    Abstract: Phase change memory has been considered as the next generation in non-volatile electronic data storage. The property modulation of such materials by the doping of rare-earth elements has drawn a lot of attention, which motivates us to search for the optimal dopants and reveal the underlying mechanisms. Here, we investigate the role of Gd as a dopant in Ge2Sb2Te5, which exhibits higher crystalline resistance and better thermal stability and antioxidant capacity than the undoped counterpart. Moreover, Gd dopants suppress both the processes of phase transition and grain growth. The crystalline structure remains unchanged with Gd dopants and vacancies are randomly distributed. Furthermore, the bonding mechanism was theoretically investigated. In the amorphous state, Gd atoms modify the local structures around Ge, Sb, and Te atoms. The large coordination number of Gd and the “Gd–Te distorted pentagonal bipyramidal-like” structure can be attributed to the good thermal stability. These microscopic findings figure out some of the key issues about the bonding mechanism, electrical properties, and crystallization behaviors of Gd doped phase change memory materials, which could be useful for storage devices.
    Type of Medium: Online Resource
    ISSN: 0021-8979 , 1089-7550
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2018
    detail.hit.zdb_id: 220641-9
    detail.hit.zdb_id: 3112-4
    detail.hit.zdb_id: 1476463-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    AIP Publishing ; 2018
    In:  Applied Physics Letters Vol. 113, No. 2 ( 2018-07-09)
    In: Applied Physics Letters, AIP Publishing, Vol. 113, No. 2 ( 2018-07-09)
    Abstract: Recent advances in the study of thermoelectric materials mainly focus on the developments or designs of methods to reduce thermal conductivities. The information of phonon scattering processes is the key to the understanding of the thermal transfer and transport of a material. Such information is essential for the understanding of the thermal conductivity of a material itself and for the further improvement to demand the requirements for technological applications. Recently, palladium sulfide has been examined as a potential thermoelectric material. However, the high thermal conductivity limits its thermoelectric performance and technological applications. Here, Raman scattering spectroscopy is used to investigate the thermal transport properties of this material over a wide range of temperatures. The nonlinear temperature-dependent frequencies and linewidths of the Raman modes illustrate the anharmonicity of phonon scattering for thermal transport in this material. Three-phonon scattering processes are found to account for the thermal transport in the temperature range of 10–620 K. The high-energy bands of the Bg mode related to the light atom (S) contribute most to the thermal transport properties. More phonon scattering processes including higher orders are seemingly needed to further reduce the thermal conductivity of this material.
    Type of Medium: Online Resource
    ISSN: 0003-6951 , 1077-3118
    RVK:
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2018
    detail.hit.zdb_id: 211245-0
    detail.hit.zdb_id: 1469436-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Journal of Applied Physics, AIP Publishing, Vol. 118, No. 12 ( 2015-09-28)
    Abstract: Bi2AE2Co2O8+δ (AE represents alkaline earth), constructed by stacking of rock-salt Bi2AE2O4 and triangle CoO2 layers alternatively along c-axis, is one of promising thermoelectric oxides. The most impressive feature of Bi2AE2Co2O8+δ, as reported previously, is their electrical conductivity mainly lying along CoO2 plane, adjusting Bi2AE2O4 layer simultaneously manipulates both thermal conductivity and electrical conductivity. It in turn optimizes thermoelectric performance of these materials. In this work, we characterize the anisotropic thermal and electrical conductivity along both ab-plane and c-direction of Bi2AE2Co2O8+δ (AE = Ca, Sr, Ba, Sr1−xBax) single crystals. The results substantiate that isovalence replacement in Bi2AE2Co2O8+δ remarkably modifies their electrical property along ab-plane; while their thermal conductivity along ab-plane only has a slightly difference. At the same time, both the electrical conductivity and thermal conductivity along c-axis of these materials also have dramatic changes. Certainly, the electrical resistance along c-axis is too high to be used as thermoelectric applications. These results suggest that adjusting nano-block Bi2AE2O4 layer in Bi2AE2Co2O8+δ cannot modify the thermal conductivity along high electrical conductivity plane (ab-plane here). The evolution of electrical property is discussed by Anderson localization and electron-electron interaction U. And the modification of thermal conductivity along c-axis is attributed to the microstructure difference. This work sheds more light on the manipulation of the thermal and electrical conductivity in the layered thermoelectric materials.
    Type of Medium: Online Resource
    ISSN: 0021-8979 , 1089-7550
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2015
    detail.hit.zdb_id: 220641-9
    detail.hit.zdb_id: 3112-4
    detail.hit.zdb_id: 1476463-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Applied Physics Letters, AIP Publishing, Vol. 108, No. 24 ( 2016-06-13)
    Abstract: Recently, the extremely large magnetoresistance (MR) observed in transition metal telluride, like WTe2, attracted much attention because of the potential applications in magnetic sensor. Here, we report the observation of extremely large magnetoresistance as 3.0 × 104% measured at 2 K and 9 T magnetic field aligned along [001]-ZrSiS. The significant magnetoresistance change (∼1.4 × 104%) can be obtained when the magnetic field is titled from [001] to [011]-ZrSiS. These abnormal magnetoresistance behaviors in ZrSiS can be understood by electron-hole compensation and the open orbital of Fermi surface. Because of these superior MR properties, ZrSiS may be used in the magnetic sensors.
    Type of Medium: Online Resource
    ISSN: 0003-6951 , 1077-3118
    RVK:
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2016
    detail.hit.zdb_id: 211245-0
    detail.hit.zdb_id: 1469436-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    AIP Publishing ; 2016
    In:  Applied Physics Letters Vol. 108, No. 25 ( 2016-06-20)
    In: Applied Physics Letters, AIP Publishing, Vol. 108, No. 25 ( 2016-06-20)
    Abstract: A photon-to-current efficiency of 2.93% is received for the Mn-doped CdS (MCdS)-quantum dot sensitized solar cells (QDSSCs) using Mn:ZnO (MZnO) nanowire as photoanode. Hydrothermal synthesized MZnO are spin-coated on fluorine doped tin oxide (FTO) glass with P25 paste to serve as photoanode after calcinations. MCdS was deposited on the MZnO film by the successive ionic layer adsorption and reaction method. The long lived excitation energy state of Mn2+ is located inside the conduction band in the wide bandgap ZnO and under the conduction band of CdS, which increases the energetic overlap of donor and acceptor states, reducing the “loss-in-potential,” inhibiting charge recombination, and accelerating electron injection. The engineered band structure is well reflected by the electrochemical band detected using cyclic voltammetry. Cell performances are evidenced by current density-voltage (J-V) traces, diffuse reflectance spectra, transient PL spectroscopy, and incident photon to current conversion efficiency characterizations. Further coating of CdSe on MZnO/MCdS electrode expands the light absorption band of the sensitizer, an efficiency of 4.94% is received for QDSSCs.
    Type of Medium: Online Resource
    ISSN: 0003-6951 , 1077-3118
    RVK:
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2016
    detail.hit.zdb_id: 211245-0
    detail.hit.zdb_id: 1469436-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Physics of Plasmas, AIP Publishing, Vol. 21, No. 1 ( 2014-01-01)
    Abstract: Since ignition target design with layered deuterium and triterium ice had been proposed several decades ago, much effort was devoted to fabricate and implode cryogenic targets. Until recently, direct-drive cryogenic target implosion experiment was carried out on SGIII prototype laser facility. The target consisted of a plastic capsule supported by fill tube. Cryogenic helium gas was used to cool the capsule to a few degrees below the deuterium triple point. The resulting deuterium ice layer was characterized by optical shadowgraph and smoothed by applied temperature gradient. Eight laser beams with total energy of 7 kJ were used to directly drive the implosion. On the path of laser light to the capsule, there were 500 nm sealing film and helium gas of mm length. X-ray pinhole images were analyzed to confirm that the sealing film, and helium gas had little effect on aiming accuracy but caused some loss of laser energy especially when condensation on the sealing film was observed.
    Type of Medium: Online Resource
    ISSN: 1070-664X , 1089-7674
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2014
    detail.hit.zdb_id: 1472746-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...