GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Online Resource  (6)
  • AIP Publishing  (6)
Material
  • Online Resource  (6)
Publisher
  • AIP Publishing  (6)
Language
Years
Subjects(RVK)
  • 1
    In: Applied Physics Letters, AIP Publishing, Vol. 111, No. 10 ( 2017-09-04)
    Abstract: Growth of high-quality GaN within a limited thickness is still a challenge, which is important both in improving device performance and in reducing the cost. In this work, a self-organized graphene is investigated as a nano-mask for two-step GaN epitaxial lateral overgrowth (2S-ELOG) in hydride vapor phase epitaxy. Efficient improvement of crystal quality was revealed by x-ray diffraction. The microstructural properties, especially the evolution of threading dislocations (TDs), were investigated by scanning electron microscopy and transmission electron microscopy. Stacking faults blocked the propagation of TDs, and fewer new TDs were subsequently generated by the coalescence of different orientational domains and lateral-overgrown GaN. This evolution mechanism of TDs was different from that of traditional ELOG technology or one-step ELOG (1S-ELOG) technology using a two-dimensional (2D) material as a mask.
    Type of Medium: Online Resource
    ISSN: 0003-6951 , 1077-3118
    RVK:
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2017
    detail.hit.zdb_id: 211245-0
    detail.hit.zdb_id: 1469436-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Applied Physics Letters, AIP Publishing, Vol. 120, No. 11 ( 2022-03-14)
    Abstract: Ultraviolet (UV) photodetection has been of great importance in the fields of aerospace, space communications, and remotely sensed images. However, conventional UV photodetectors (PDs) have been facing intrinsic drawbacks of complicate structural issues and interference from ambient visible light. Therefore, wide bandgap semiconductors have attracted significant attention. Herein, self-powered PDs based on the monolithic germanium disulfide (m-GeS2)/gallium nitride (GaN) pn heterojunction have been proposed with a large-size m-GeS2 over 2 cm2. The electronic and optical properties of the m-GeS2/GaN heterojunction are investigated via experiments and first-principles methods. The PDs reveal an impressive performance in self-powered response and high responsivity and detectivity of 16.8 mA W−1 and 1.03 × 1011 Jones, respectively. Further analyses determined that the PDs show an ultrafast photoresponse with a rise and fall time of  & lt; 0.30 and 1.10 ms at 365 nm. Consequently, this study provides a feasible method for the synthesis of large-sized m-GeS2 and demonstrates its enormous potential in high-performance, self-powered UV photodetection.
    Type of Medium: Online Resource
    ISSN: 0003-6951 , 1077-3118
    RVK:
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2022
    detail.hit.zdb_id: 211245-0
    detail.hit.zdb_id: 1469436-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Matter and Radiation at Extremes, AIP Publishing, Vol. 7, No. 6 ( 2022-11-01)
    Abstract: In this work, the high-energy-density plasmas (HEDP) evolved from joule-class-femtosecond-laser-irradiated nanowire-array (NWA) targets were numerically and experimentally studied. The results of particle-in-cell simulations indicate that ions accelerated in the sheath field around the surfaces of the nanowires are eventually confined in a plasma, contributing most to the high energy densities. The protons emitted from the front surfaces of the NWA targets provide rich information about the interactions that occur. We give the electron and ion energy densities for broad target parameter ranges. The ion energy densities from NWA targets were found to be an order of magnitude higher than those from planar targets, and the volume of the HEDP was several-fold greater. At optimal target parameters, 8% of the laser energy can be converted to confined protons, and this results in ion energy densities at the GJ/cm3 level. In the experiments, the measured energy of the emitted protons reached 4 MeV, and the changes in energy with the NWA’s parameters were found to fit the simulation results well. Experimental measurements of neutrons from 2H(d,n)3He fusion with a yield of (24 ± 18) × 106/J from deuterated polyethylene NWA targets also confirmed these results.
    Type of Medium: Online Resource
    ISSN: 2468-2047 , 2468-080X
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2022
    detail.hit.zdb_id: 2858469-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: AIP Advances, AIP Publishing, Vol. 11, No. 4 ( 2021-04-01)
    Abstract: In this study, a dual-mode Metglas/Pb(Zr,Ti)O3 magnetoelectric (ME) sensor was prepared for measuring weak magnetic fields. It is interesting to note that this ME sensor can work at alternating current (AC) and direct current (DC) dual-modes with high field resolution. In AC mode, a very accurate AC magnetic field resolution of 0.8 nT was achieved at a mechanical resonance frequency of 72.2 kHz; moreover, the operating frequency band for resolution better than 1 nT is as wide as 3.4 kHz. We proposed a DC bias field perturbation (DBFP) method to detect the DC magnetic field using lock-in amplifier technology. As a result, an ultra-accurate DC field resolution of 0.9 nT with noise power spectral density as low as 100 pT/Hz was obtained in the studied ME sensor via the DBFP method. The dual-mode ME sensor enables simultaneous measurement for DC and AC magnetic fields with wideband and accurate field resolution, which greatly enhances the measurement flexibility and application scope.
    Type of Medium: Online Resource
    ISSN: 2158-3226
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2021
    detail.hit.zdb_id: 2583909-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: APL Materials, AIP Publishing, Vol. 7, No. 10 ( 2019-10-01)
    Abstract: Chemical pressure is an effective method to tune physical properties, particularly for diluted magnetic semiconductors (DMSs) of which ferromagnetic ordering is mediated by charge carriers. Via substitution of smaller Ca for larger Sr, we introduce chemical pressure on (Sr,Na)(Cd,Mn)2As2 to fabricate a new DMS material (Ca,Na)(Cd,Mn)2As2. Carriers and spins are introduced by substitutions of (Ca,Na) and (Cd,Mn), respectively. The unit cell volume reduces by 6.2% after complete substitution of Ca for Sr, suggesting a subsistent chemical pressure. Importantly, the local geometry of the [Cd/MnAs4] tetrahedron is optimized via chemical compression that increases the Mn–As hybridization leading to enhanced ferromagnetic interactions. As a result, the maximum Curie temperature (TC) is increased by about 50% while the maximum saturation moment increases by over 100% from (Sr,Na)(Cd,Mn)2As2 to (Ca,Na)(Cd,Mn)2As2. The chemical pressure estimated from the equation of state is equal to an external physical pressure of 3.6 GPa.
    Type of Medium: Online Resource
    ISSN: 2166-532X
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2019
    detail.hit.zdb_id: 2722985-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    AIP Publishing ; 2020
    In:  Review of Scientific Instruments Vol. 91, No. 1 ( 2020-01-01)
    In: Review of Scientific Instruments, AIP Publishing, Vol. 91, No. 1 ( 2020-01-01)
    Abstract: A neutron activation system (NAS) has been developed on the Experimental Advanced Superconducting Tokamak (EAST) for the investigation of time-integrated neutron yield. It is a robust neutron diagnostic with high precision and a wide dynamic range. Some high purity materials with a proper nuclear reaction energy threshold and cross section are tested as neutron detectors in the NAS, and they are delivered to the tokamak device by a pneumatic transfer system. The length of the pneumatic pipeline is about 50 m, and the transfer time ranges from 10 s to 20 s. The decay gamma rays of the activated samples are measured with a high-purity germanium spectrometer, and its detection efficiencies are 6.9% at 336 keV and 1.7% at 1779 keV, respectively. Indium and silicon samples with a reaction threshold of 0.3 MeV and 4.0 MeV, respectively, were successfully implemented in the diagnosis of DD and DT neutron yield in the EAST. The neutron flux of the NAS was compared with the count of the fission chamber in the EAST neutral beam injection experiment, and the DD neutron yield evaluated by the NAS ranges from 1.9 × 1012 n/shot to 5.9 × 1014 n/shot during recent experimental campaign.
    Type of Medium: Online Resource
    ISSN: 0034-6748 , 1089-7623
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2020
    detail.hit.zdb_id: 209865-9
    detail.hit.zdb_id: 1472905-2
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...