GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    AIP Publishing ; 2000
    In:  Physics of Fluids Vol. 12, No. 6 ( 2000-06-01), p. 1327-1342
    In: Physics of Fluids, AIP Publishing, Vol. 12, No. 6 ( 2000-06-01), p. 1327-1342
    Abstract: Turbulence resulting from Kelvin–Helmholtz instability in layers of localized stratification and shear is studied by means of direct numerical simulation. Our objective is to present a comprehensive description of the turbulence evolution in terms of simple, conceptual pictures of shear–buoyancy interaction that have been developed previously based on assumptions of spatially uniform stratification and shear. To this end, we examine the evolution of various length scales that are commonly used to characterize the physical state of a turbulent flow. Evolving layer thicknesses and overturning scales are described, as are the Ozmidov, Corrsin, and Kolmogorov scales. These considerations enable us to provide an enhanced understanding of the relationships between uniform-gradient and localized-gradient models for sheared, stratified turbulence. We show that the ratio of the Ozmidov scale to the Thorpe scale provides a useful indicator of the age of a turbulent event resulting from Kelvin–Helmholtz instability.
    Type of Medium: Online Resource
    ISSN: 1070-6631 , 1089-7666
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2000
    detail.hit.zdb_id: 1472743-2
    detail.hit.zdb_id: 241528-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    AIP Publishing ; 2000
    In:  Physics of Fluids Vol. 12, No. 6 ( 2000-06-01), p. 1343-1362
    In: Physics of Fluids, AIP Publishing, Vol. 12, No. 6 ( 2000-06-01), p. 1343-1362
    Abstract: Direct numerical simulations of turbulence resulting from Kelvin–Helmholtz instability in stably stratified shear flow are used to study sources of anisotropy in various spectral ranges. The set of simulations includes various values of the initial Richardson and Reynolds numbers, as well as Prandtl numbers ranging from 1 to 7. We demonstrate that small-scale anisotropy is determined almost entirely by the spectral separation between the small scales and the larger scales on which background shear and stratification act, as quantified by the buoyancy Reynolds number. Extrapolation of our results suggests that the dissipation range becomes isotropic at buoyancy Reynolds numbers of order 105, although we cannot rule out the possibility that small-scale anisotropy persists at arbitrarily high Reynolds numbers, as some investigators have suggested. Correlation-coefficient spectra reveal the existence of anisotropic flux reversals in the dissipation subrange whose magnitude decreases with increasing Reynolds number. The scalar concentration field tends to be more anisotropic than the velocity field. Estimates of the dissipation rates of kinetic energy and scalar variance based on the assumption of isotropy are shown to be accurate for buoyancy Reynolds numbers greater than O(102). Such estimates are therefore reliable for use in the interpretation of most geophysical turbulence data, but may give misleading results when applied to smaller-scale flows.
    Type of Medium: Online Resource
    ISSN: 1070-6631 , 1089-7666
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2000
    detail.hit.zdb_id: 1472743-2
    detail.hit.zdb_id: 241528-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Meteorological Society ; 2002
    In:  Journal of Physical Oceanography Vol. 32, No. 8 ( 2002-08), p. 2312-2333
    In: Journal of Physical Oceanography, American Meteorological Society, Vol. 32, No. 8 ( 2002-08), p. 2312-2333
    Type of Medium: Online Resource
    ISSN: 0022-3670 , 1520-0485
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2002
    detail.hit.zdb_id: 2042184-9
    detail.hit.zdb_id: 184162-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2001
    In:  Journal of Geophysical Research: Oceans Vol. 106, No. C3 ( 2001-03-15), p. 4593-4611
    In: Journal of Geophysical Research: Oceans, American Geophysical Union (AGU), Vol. 106, No. C3 ( 2001-03-15), p. 4593-4611
    Abstract: Observations of currents, hydrography, and turbulence provide unambiguous evidence for hydraulic control of flow over an isolated three‐dimensional topographic feature on Oregon's continental shelf. The flow becomes critical at the crest of the bank, forming a strong supercritical downslope flow in the lower layer. Farther downstream, internal hydraulic jumps form as the bottom flow becomes subcritical. As a consequence, turbulence is greatly enhanced in the bottom boundary layer, in the sheared interface above the swiftly flowing bottom current, and in the internal hydraulic jump. The dissipation rate of turbulent energy is consistent with the mean energy removal rate for a hydraulic jump in an idealized two‐layer flow. This enhanced turbulence constitutes a “high drag” state of the flow in which the form drag introduced by the topography exerts significant influence on the flow around it and mixing is increased 10 2 –10 3 times the background values.
    Type of Medium: Online Resource
    ISSN: 0148-0227
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2001
    detail.hit.zdb_id: 2033040-6
    detail.hit.zdb_id: 3094104-0
    detail.hit.zdb_id: 2130824-X
    detail.hit.zdb_id: 2016813-5
    detail.hit.zdb_id: 2016810-X
    detail.hit.zdb_id: 2403298-0
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 161666-3
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 2969341-X
    detail.hit.zdb_id: 161665-1
    detail.hit.zdb_id: 3094268-8
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 3094181-7
    detail.hit.zdb_id: 3094219-6
    detail.hit.zdb_id: 3094167-2
    detail.hit.zdb_id: 2220777-6
    detail.hit.zdb_id: 3094197-0
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    American Meteorological Society ; 2004
    In:  Journal of Physical Oceanography Vol. 34, No. 6 ( 2004-06), p. 1297-1312
    In: Journal of Physical Oceanography, American Meteorological Society, Vol. 34, No. 6 ( 2004-06), p. 1297-1312
    Type of Medium: Online Resource
    ISSN: 0022-3670 , 1520-0485
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2004
    detail.hit.zdb_id: 2042184-9
    detail.hit.zdb_id: 184162-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2003
    In:  Geophysical Research Letters Vol. 30, No. 20 ( 2003-10)
    In: Geophysical Research Letters, American Geophysical Union (AGU), Vol. 30, No. 20 ( 2003-10)
    Abstract: A sequence of three internal solitary waves of elevation were observed propagating shoreward along a near‐bottom density interface over Oregon's continental shelf. These waves are highly turbulent and coincide with enhanced optical backscatter, consistent with increased suspended sediments in the bottom boundary layer. Non‐linear solitary wave solutions are employed to estimate wave speeds and energy. The waves are rank ordered in amplitude, phase speed, and energy, and inversely ordered in width. Wave kinetic energy is roughly twice the potential energy. The observed turbulence is not sufficiently large to dissipate the waves' energy before the waves reach the shore. Because of high wave velocities at the sea bed, bottom stress is inferred to be an important source of wave energy loss, unlike near‐surface solitary waves. The wave solution suggests that the lead wave has a trapped core, implying enhanced cross‐shelf transport of fluid and biology.
    Type of Medium: Online Resource
    ISSN: 0094-8276 , 1944-8007
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2003
    detail.hit.zdb_id: 2021599-X
    detail.hit.zdb_id: 7403-2
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 301, No. 5631 ( 2003-07-18), p. 355-357
    Abstract: The cascade from tides to turbulence has been hypothesized to serve as a major energy pathway for ocean mixing. We investigated this cascade along the Hawaiian Ridge using observations and numerical models. A divergence of internal tidal energy flux observed at the ridge agrees with the predictions of internal tide models. Large internal tidal waves with peak-to-peak amplitudes of up to 300 meters occur on the ridge. Internal-wave energy is enhanced, and turbulent dissipation in the region near the ridge is 10 times larger than open-ocean values. Given these major elements in the tides-to-turbulence cascade, an energy budget approaches closure.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2003
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...