GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Online Resource  (4)
  • 2020-2024  (4)
  • 1
    In: International Journal of Molecular Sciences, MDPI AG, Vol. 21, No. 9 ( 2020-05-07), p. 3309-
    Abstract: Oxysterols, important regulators of cholesterol homeostasis in the brain, are affected by neurodegenerative diseases. Early-onset Alzheimer’s disease is associated with higher levels of circulating brain-derived 24S-hydroxycholesterol (24S-OHC). Conversion of cholesterol to 24S-OHC is mediated by cholesterol 24S-hydroxylase in the brain, which is the major pathway for oxysterol elimination, followed by oxidation through hepatic first-pass metabolism by CYP39A1. Abnormal CYP39A1 expression results in accumulation of 24S-OHC, influencing neurodegenerative disease-related deterioration; thus, it is important to understand the normal elimination of 24S-OHC and the system regulating CYP39A1, a selective hepatic metabolic enzyme of 24S-OHC. We examined the role of transcriptional regulation by retinoic acid receptor-related orphan receptor α (RORα), a nuclear receptor that responds to oxysterol ligands. In humans, the promoter and first intronic regions of CYP39A1 contain two putative RORα response elements (ROREs). RORα binding and responses of these ROREs were assessed using electrophoretic mobility shift, chromatin immunoprecipitation, and luciferase reporter assays. CYP39A1 was upregulated by RORα overexpression in HEK293 cells, while RORα knockdown by siRNA significantly downregulated CYP39A1 expression in human hepatoma cells. Additionally, CYP39A1 was induced by RORα agonist treatment, suggesting that CYP39A1 expression is activated by RORα nuclear receptors. This may provide a way to increase CYP39A1 activity using RORα agonists, and help halt 24S-OHC accumulation in neurodegenerative illnesses.
    Type of Medium: Online Resource
    ISSN: 1422-0067
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2019364-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2022
    In:  Bioscience, Biotechnology, and Biochemistry Vol. 86, No. 10 ( 2022-09-23), p. 1383-1397
    In: Bioscience, Biotechnology, and Biochemistry, Oxford University Press (OUP), Vol. 86, No. 10 ( 2022-09-23), p. 1383-1397
    Abstract: The Bacillus subtilis rhiLFGN-rhgR-yesTUVWXYZ (formerly yesOPQRSTUVWXYZ) gene cluster includes genes for metabolizing rhamnogalacturonan type I (RG-I), a major pectin constituent, and the rhgR gene encoding an AraC/XylS transcriptional activator. The yesL-rhgKL (formerly yesLMN) operon, adjacent to the rhiL gene, includes the rhgKL genes encoding a two-component regulatory system. The reporter analyses showed that 3 promoters immediately upstream of the rhiL, yesW, and yesL genes were induced by RG-I and repressed by glucose in the medium. The reporter analyses also showed that RhgL and RhgR contribute to the RG-I-dependent induction of the rhiL promoter and that CcpA mediates the catabolite repression of the rhiL and yesL promoters. The in vitro experiments demonstrated that the RhgL response regulator and the CcpA complex bind to each site in the rhiL promoter region. The RT-PCR analysis and the different properties of the rhiL and yesW promoters suggested the rhiLFGN-rhgR-yesTUV genes as an operon.
    Type of Medium: Online Resource
    ISSN: 1347-6947
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2022
    detail.hit.zdb_id: 2110940-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Informa UK Limited ; 2020
    In:  Bioscience, Biotechnology, and Biochemistry Vol. 84, No. 2 ( 2020-02-01), p. 347-357
    In: Bioscience, Biotechnology, and Biochemistry, Informa UK Limited, Vol. 84, No. 2 ( 2020-02-01), p. 347-357
    Abstract: Bacillus ComQ participates in the biosynthesis of a quorum-sensing signaling molecule (ComX pheromone) through catalyzing the prenylation at a Trp residue of the precursor peptide (pre-ComX) with geranyl diphosphate (C10 type) or farnesyl diphosphate (C15 type). We hypothesized that several residues specifically conserved among either type of ComQs are important for their substrate specificities. Using a simple bioassay, we revealed that Phe63, Asn186, and Gly190 in ComQRO-E-2 (C10 type) were nondisplaceable to Ser63, Gly186, and Val190, the corresponding residues in the C15-type ComQ, respectively. A three-dimensional model suggested that the 186th and 190th residues are involved in the pre-ComX binding. In vitro analysis showed that substitution of Phe63 with Ser in ComQRO-E-2 significantly reduced the geranylation activity but substantially enhanced the farnesylation activity, whereas substitution of Ser63 with Phe in ComQ168 (C15 type) reduced the farnesylation activity. Therefore, the 63rd residue was found to be significant for the prenyl-substrate preference. Abbreviations: GPP: geranyl diphosphate; FPP: farnesyl diphosphate; IPP: isopentenyl diphosphate; GGPP: geranylgeranyl diphosphate; FARM: first aspartate-rich motif; SARM: second aspartate-rich motif; β-Gal: β-galactosidase; TBABG: tryptose blood agar base supplemented with glucose; X-gal: 5-bromo-4-chloro-3-indolyl-β-D-galactoside
    Type of Medium: Online Resource
    ISSN: 0916-8451 , 1347-6947
    Language: English
    Publisher: Informa UK Limited
    Publication Date: 2020
    detail.hit.zdb_id: 2110940-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2023
    In:  Bioscience, Biotechnology, and Biochemistry Vol. 87, No. 9 ( 2023-08-23), p. 1017-1028
    In: Bioscience, Biotechnology, and Biochemistry, Oxford University Press (OUP), Vol. 87, No. 9 ( 2023-08-23), p. 1017-1028
    Abstract: Recombinant protein production must be tightly controlled when overproduction adversely affects the host bacteria. We developed a flavonoid-inducible T7 expression system in Bacillus subtilis using the qdoI promoter to control the T7 RNA polymerase gene (T7 pol). Using the egfp reporter gene controlled by the T7 promoter in a multicopy plasmid, we confirmed that this expression system is tightly regulated by flavonoids, such as quercetin and fisetin. Altering the qdoI promoter for T7 pol control to its hybrid derivative increased the expression level by 6.6-fold at maximum values upon induction. However, faint expression leakage was observed under a noninducing condition. Therefore, the two expression systems with the original qdoI promoter and the hybrid construct can be used selectively, depending on the high control accuracy or production yield required.
    Type of Medium: Online Resource
    ISSN: 1347-6947
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2023
    detail.hit.zdb_id: 2110940-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...