GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Online Resource  (4)
  • Wang, Di  (4)
  • Medicine  (4)
Material
  • Online Resource  (4)
Language
Years
Subjects(RVK)
  • Medicine  (4)
RVK
  • 1
    In: Gut, BMJ, Vol. 71, No. 1 ( 2022-01), p. 163-175
    Abstract: Hepatitis B virus-related acute-on-chronic liver failure (HBV-ACLF) pathophysiology remains unclear. This study aims to characterise the molecular basis of HBV-ACLF using transcriptomics. Methods Four hundred subjects with HBV-ACLF, acute-on-chronic hepatic dysfunction (ACHD), liver cirrhosis (LC) or chronic hepatitis B (CHB) and normal controls (NC) from a prospective multicentre cohort were studied, and 65 subjects (ACLF, 20; ACHD, 10; LC, 10; CHB, 10; NC, 15) among them underwent mRNA sequencing using peripheral blood mononuclear cells (PBMCs). Results The functional synergy analysis focusing on seven bioprocesses related to the PBMC response and the top 500 differentially expressed genes (DEGs) showed that viral processes were associated with all disease stages. Immune dysregulation, as the most prominent change and disorder triggered by HBV exacerbation, drove CHB or LC to ACHD and ACLF. Metabolic disruption was significant in ACHD and severe in ACLF. The analysis of 62 overlapping DEGs further linked the HBV-based immune-metabolism disorder to ACLF progression. The signatures of interferon-related, neutrophil-related and monocyte-related pathways related to the innate immune response were significantly upregulated. Signatures linked to the adaptive immune response were downregulated. Disruptions of lipid and fatty acid metabolism were observed during ACLF development. External validation of four DEGs underlying the aforementioned molecular mechanism in patients and experimental rats confirmed their specificity and potential as biomarkers for HBV-ACLF pathogenesis. Conclusions This study highlights immune-metabolism disorder triggered by HBV exacerbation as a potential mechanism of HBV-ACLF and may indicate a novel diagnostic and treatment target to reduce HBV-ACLF-related mortality.
    Type of Medium: Online Resource
    ISSN: 0017-5749 , 1468-3288
    RVK:
    Language: English
    Publisher: BMJ
    Publication Date: 2022
    detail.hit.zdb_id: 1492637-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Journal of Leukocyte Biology, Oxford University Press (OUP), Vol. 107, No. 4 ( 2020-04-01), p. 635-647
    Abstract: Neutropenia and impaired functions were common manifestation in antiretroviral therapy (ART) in both naïve and experienced PLWHA. Granulopoiesis can be divided into two phases: lineage determination and committed granulopoiesis. However, stage-specific impairment of granulopoiesis in PLWHA with neutropenia remains unclear. A total of 48 ART-naïve and 49 ART-experienced PLWHA from 2016 to 2018 were recruited and divided into non-, mild-, and moderate-to-severe-neutropenia groups according to their neutrophil counts. The bone marrow aspirates and peripheral blood were collected and analyzed by multicolor flow cytometry for granulocyte subsets, hematopoietic stem/progenitor cells (HSPC), apoptosis, and emigration and retention of different subsets. Compared with healthy donors, the percentages of circulating segmented neutrophils were significantly decreased along with an increase of immature neutrophils in both groups. ART-naïve patients with moderate to severe neutropenia exhibited decreased proportion and accelerated apoptosis of relative mature segmented neutrophils. In contrast, ART-experienced patients with neutropenia displayed decreased proportion of granulocyte macrophage progenitors, indicating a defect at a stage of lineage determination. Meanwhile, ART-experienced patients with neutropenia also the expression of CXCR4 segmented neutrophils, suggesting an increased retention of segmented neutrophils inn the bone marrow. ART-naïve patients with neutropenia is caused by increased apoptosis of relatively differentiated neutrophils at committed granulopoiesis, whereas impaired lineage determination and enhanced retention of segmented neutrophils contribute to in ART-experienced patients.
    Type of Medium: Online Resource
    ISSN: 1938-3673 , 0741-5400
    RVK:
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2020
    detail.hit.zdb_id: 2026833-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Blood, American Society of Hematology, Vol. 135, No. 1 ( 2020-01-2), p. 17-27
    Abstract: Relapse following chemeric antigen receptor (CAR) T-cell therapy can arise from progressive loss of the CAR T cells or from loss of the target antigen by tumor cells. Wang et al report that using a mix of CAR T cells targeting CD19 and CD22 reduces relapse with antigen-negative tumor cells. However, a lack of CAR T-cell persistence leads to increased relapse with antigen-positive cells.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2020
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Blood, American Society of Hematology, Vol. 137, No. 21 ( 2021-05-27), p. 2890-2901
    Abstract: B-cell maturation antigen (BCMA)-specific chimeric antigen receptor (CAR) T-cell therapies have shown efficacy in relapsed/refractory multiple myeloma (RRMM). Because the non-human originated antigen-targeting domain may limit clinical efficacy, we developed a fully human BCMA-specific CAR, CT103A, and report its safety and efficacy in a phase 1 trial. Eighteen consecutive patients with RRMM, including 4 with prior murine BCMA CAR exposures, were enrolled. CT103A was administered at 1, 3, and 6 × 106 CAR-positive T cells/kg in the dose-escalation phase, and 1 × 106 CAR-positive T cells/kg in the expansion cohort. The overall response rate was 100%, with 72.2% of the patients achieving complete response or stringent complete response. For the 4 murine BCMA CAR–exposed patients, 3 achieved stringent complete response, and 1 achieved a very good partial response. At 1 year, the progression-free survival rate was 58.3% for all cohorts and 79.1% for the patients without extramedullary myeloma. Hematologic toxicities were the most common adverse events; 70.6% of the patients experienced grade 1 or 2 cytokine release syndromes. No immune effector cell–associated neurotoxicity syndrome was observed. To the cutoff date, CAR transgenes were detectable in 77.8% of the patients. The median CAR transgene persistence was 307.5 days. Only 1 patient was positive for the anti-drug antibody. Altogether, CT103A is safe and highly active in patients with RRMM and can be developed as a promising therapy for RRMM. Patients who relapsed from prior murine BCMA CAR T-cell therapy may still benefit from CT103A. This trial was registered at http://www.chictr.org.cn as #ChiCTR1800018137.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2021
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...