GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Leukemia, Springer Science and Business Media LLC, Vol. 34, No. 6 ( 2020-06), p. 1553-1562
    Abstract: The fusion genes CBFB / MYH11 and RUNX1 / RUNX1T1 block differentiation through disruption of the core binding factor (CBF) complex and are found in 10–15% of adult de novo acute myeloid leukemia (AML) cases. This AML subtype is associated with a favorable prognosis; however, nearly half of CBF-rearranged patients cannot be cured with chemotherapy. This divergent outcome might be due to additional mutations, whose spectrum and prognostic relevance remains hardly defined. Here, we identify nonsilent mutations, which may collaborate with CBF-rearrangements during leukemogenesis by targeted sequencing of 129 genes in 292 adult CBF leukemia patients, and thus provide a comprehensive overview of the mutational spectrum (‘mutatome’) in CBF leukemia. Thereby, we detected fundamental differences between CBFB/MYH11 - and RUNX1/RUNX1T1 -rearranged patients with ASXL2 , JAK2, JAK3, RAD21 , TET2, and ZBTB7A being strongly correlated with the latter subgroup. We found prognostic relevance of mutations in genes previously known to be AML-associated such as KIT , SMC1A, and DHX15 and identified novel, recurrent mutations in NFE2 (3%), MN1 (4%), HERC1 (3%), and ZFHX4 (5%). Furthermore, age 〉 60 years, nonprimary AML and loss of the Y-chromosomes are important predictors of survival. These findings are important for refinement of treatment stratification and development of targeted therapy approaches in CBF leukemia.
    Type of Medium: Online Resource
    ISSN: 0887-6924 , 1476-5551
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2020
    detail.hit.zdb_id: 2008023-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Blood, American Society of Hematology, Vol. 122, No. 10 ( 2013-09-05), p. 1761-1769
    Abstract: FLT3 N676K mutations without concurrent internal tandem duplication (ITD) are associated with core-binding factor leukemia. N676K activates FLT3 and downstream signaling pathways.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2013
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Blood, American Society of Hematology, Vol. 121, No. 23 ( 2013-06-06), p. 4749-4752
    Abstract: Exome sequencing of adult ETP-ALL reveals new recurrent mutations; in particular, DNMT3A is frequently mutated in adult ETP-ALL. More than 60% of all adult patients with ETP-ALL harbor a mutation that could potentially be targeted by a specific therapy.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2013
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Nature Communications, Springer Science and Business Media LLC, Vol. 7, No. 1 ( 2016-06-02)
    Abstract: The t(8;21) translocation is one of the most frequent cytogenetic abnormalities in acute myeloid leukaemia (AML) and results in the RUNX1 / RUNX1T1 rearrangement. Despite the causative role of the RUNX1 / RUNX1T1 fusion gene in leukaemia initiation, additional genetic lesions are required for disease development. Here we identify recurring ZBTB7A mutations in 23% (13/56) of AML t(8;21) patients, including missense and truncating mutations resulting in alteration or loss of the C-terminal zinc-finger domain of ZBTB7A. The transcription factor ZBTB7A is important for haematopoietic lineage fate decisions and for regulation of glycolysis. On a functional level, we show that ZBTB7A mutations disrupt the transcriptional repressor potential and the anti-proliferative effect of ZBTB7A. The specific association of ZBTB7A mutations with t(8;21) rearranged AML points towards leukaemogenic cooperativity between mutant ZBTB7A and the RUNX1/RUNX1T1 fusion.
    Type of Medium: Online Resource
    ISSN: 2041-1723
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2016
    detail.hit.zdb_id: 2553671-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Leukemia Research Reports, Elsevier BV, Vol. 4, No. 2 ( 2015), p. 72-75
    Type of Medium: Online Resource
    ISSN: 2213-0489
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2015
    detail.hit.zdb_id: 2706248-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 24, No. 7 ( 2018-04-01), p. 1716-1726
    Abstract: Purpose: To study mechanisms of therapy resistance and disease progression, we analyzed the evolution of cytogenetically normal acute myeloid leukemia (CN-AML) based on somatic alterations. Experimental Design: We performed exome sequencing of matched diagnosis, remission, and relapse samples from 50 CN-AML patients treated with intensive chemotherapy. Mutation patterns were correlated with clinical parameters. Results: Evolutionary patterns correlated with clinical outcome. Gain of mutations was associated with late relapse. Alterations of epigenetic regulators were frequently gained at relapse with recurring alterations of KDM6A constituting a mechanism of cytarabine resistance. Low KDM6A expression correlated with adverse clinical outcome, particularly in male patients. At complete remission, persistent mutations representing preleukemic lesions were observed in 48% of patients. The persistence of DNMT3A mutations correlated with shorter time to relapse. Conclusions: Chemotherapy resistance might be acquired through gain of mutations. Insights into the evolution during therapy and disease progression lay the foundation for tailored approaches to treat or prevent relapse of CN-AML. Clin Cancer Res; 24(7); 1716–26. ©2018 AACR.
    Type of Medium: Online Resource
    ISSN: 1078-0432 , 1557-3265
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2018
    detail.hit.zdb_id: 1225457-5
    detail.hit.zdb_id: 2036787-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Genes, Chromosomes and Cancer, Wiley, Vol. 56, No. 1 ( 2017-01), p. 75-86
    Abstract: Deletions of the long arm of chromosome 9 [del(9q)] are a rare but recurring aberration in acute myeloid leukemia (AML). Del(9q) can be found as the sole abnormality or in combination with other cytogenetic aberrations such as t(8;21) and t(15;17). TLE1 and TLE4 were identified to be critical genes contained in the 9q region. We performed whole exome sequencing of 5 patients with del(9q) as the sole abnormality followed by targeted amplicon sequencing of 137 genes of 26 patients with del(9q) as sole or combined with other aberrations. We detected frequent mutations in NPM1 (10/26; 38%), DNMT3A (8/26; 31%), and WT1 (8/26; 31%) but only few FLT3 ‐ITDs (2/26; 8%). All mutations affecting NPM1 and DNMT3A were exclusively identified in patients with del(9q) as the sole abnormality and were significantly more frequent compared to 111 patients classified as intermediate‐II according to the European LeukemiaNet (10/14, 71% vs. 22/111, 20%; P   〈  0.001, 8/14, 57% vs. 26/111, 23%; P  = 0.02). Furthermore, we identified DNMT3B to be rarely but recurrently targeted by truncating mutations in AML. Gene expression analysis of 13 patients with del(9q) and 454 patients with normal karyotype or various cytogenetic aberrations showed significant down regulation of TLE4 in patients with del(9q) ( P  = 0.02). Interestingly, downregulation of TLE4 was not limited to AML with del(9q), potentially representing a common mechanism in AML pathogenesis. Our comprehensive genetic analysis of the del(9q) subgroup reveals a unique mutational profile with the frequency of DNMT3A mutations in the del(9q) only subset being the highest reported so far in AML, indicating oncogenic cooperativity. © 2016 Wiley Periodicals, Inc.
    Type of Medium: Online Resource
    ISSN: 1045-2257 , 1098-2264
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2017
    detail.hit.zdb_id: 1018988-9
    detail.hit.zdb_id: 1492641-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Blood, American Society of Hematology, Vol. 128, No. 22 ( 2016-12-02), p. 288-288
    Abstract: Even though two-thirds of acute myeloid leukemia (AML) patients respond to induction chemotherapy and achieve complete remission (CR), the majority of these patients will eventually relapse. The time from CR to relapse is an important clinical indicator of disease aggressiveness, as patients relapsing within the first 6 months after initial diagnosis have a poorer prognosis in terms of response to salvage therapy and overall survival compared to patients with a later relapse. To learn about the evolution during the course of disease, we analyzed the somatic mutation patterns from initial diagnosis to relapse in 50 cytogenetically normal (CN) AML patients. Based on the ELN classification, 38% of the patients (n=19) were assigned as "favorable" at diagnosis, all other patients were classified as "intermediate-I". ELN classification was associated with time to relapse as "intermediate-I" patients relapsed earlier than "favorable" patients (median 9.3 months vs. 16.1 months, p=0.008, log-rank test). Somatic alterations were detected by exome sequencing and confirmed by targeted amplicon sequencing of matched diagnostic, remission and relapse samples. FLT3-ITD and NPM1 mutation status were obtained from routine diagnostic tests as the reliable detection of these markers by NGS remains challenging. The vast majority of somatic alterations were present both at diagnosis and at relapse, hereafter referred to as stable mutations (70%, Fig. 1A). All patients in our cohort had ≥1 stable mutation with DNMT3A being the most stably altered gene. In 47 out of 50 patients (94%), we observed mutations that were only found at diagnosis or only at relapse. Based on the mutation patterns, four distinct 'evolutionary' subgroups of patients were defined (Fig. 1B): (I) patients with an identical mutation profile at diagnosis and at relapse ("stable", n=3, 6%), (II) patients who gained mutations at relapse ("stable + gain", n=24, 48%), (III) patients that lost mutations at relapse ("stable + loss", n=8, 16%), and (IV) patients with both loss and gain of mutations at relapse ("mixed", n=15, 30%). Mutations that were lost during the course of the disease were detected in e.g. PTPN11 or NRAS. Relapse-specific mutations were identified in e.g. IDH1/2, WT1, KPNB1 or KDM6A. Evolutionary subgroups showed differences in time to relapse (Fig. 1C). Patients with "stable + loss" relapsed earlier (median 4.1 months) than patients with gain of mutation at relapse (groups "stable + gain" and "mixed", median 12.2 months). All patients in the category "stable + loss" developed relapse within the first year after complete remission. The "stable" group of 3 patients showed an intermediate time to relapse (median 9.6 months), but was too small for a statistically valid comparison. Ultimately, the genetic evolution of CN-AML patients without gain of new mutations at relapse (categories "stable" and "stable + loss") was associated with significantly earlier relapse compared to patients that gained mutations at relapse (categories "stable + gain" and "mixed", Fig. 1D, p=0.001, log-rank test). Distinct predominant patterns of clonal evolution were observed in the ELN genetic groups, as only one patient of the "stable + loss" group was initially classified as "favorable". Interestingly, applying the ELN classification on relapse samples revealed a switch from "favorable" to "intermediate-I" in six patients, all with gain of mutations at relapse. This points towards more aggressive genetic profiles at relapse in these patients. The acquisition of mutations and/or the outgrowth of a resistant clone during/after chemotherapy might require a longer time or is per se associated with a longer time to relapse and a more favorable prognosis. Loss of mutations at relapse suggest the presence of two clones at diagnosis, with a chemotherapy resistant clone expanding after the eradication of a chemotherapy sensitive clone. As both clones share mutations and only the sensitive clone contains specific alterations, the resistant clone might be an ancestor of the sensitive clone. Taken together, in some patients the AML cells may require additional genetic alterations to become chemotherapy resistant, whereas in other patients the selective eradication of a sensitive clone is a potential mechanism underlying disease progression. Understanding the evolution of AML under selective pressure of chemotherapy is essential to cure or prevent AML relapse. Disclosures Hiddemann: Roche: Other: Grants; Genentech: Other: Grants; Roche: Membership on an entity's Board of Directors or advisory committees.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2016
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Blood, American Society of Hematology, Vol. 126, No. 23 ( 2015-12-03), p. 690-690
    Abstract: Cytogenetically normal acute myeloid leukemia (CN-AML) is a heterogeneous disease with regard to genetic alterations and clinical outcome. Recent sequencing studies categorized the growing number of recurrently mutated genes into different functional groups, e.g. myeloid transcription factors, tumor suppressors, signal transducers, chromatin modifiers, cohesin-complex and spliceosome-complex. We set out to characterize mutations in genes linked to epigenetic regulation during the progression of CN-AML. Besides genes directly involved in chromatin modification (i.e. DNMT3A, TET2, MLL, ASXL1, KDM6A, KDM2A, NSD1 and EZH2), we also studied mutations in WT1 and IDH1/2 since they are known to inhibit TET2 function. Targeted sequencing of 46 genes related to leukemia (mean coverage 〉 500x) was performed on matched diagnostic, remission and relapse samples of 50 patients with CN-AML (median age: 66, range: 21-89). We called somatic variants at diagnosis or at relapse and filtered for mutations with translational consequences, excluding known error-prone genes and common germline polymorphisms (dbSNP 138; MAF 〉 =1%). At diagnosis, 36/50 patients (72%) carried a total of 48 mutations in epigenetic regulators (Figure 1). The majority of patients harbored a single mutation affecting this functional group, while 2 or 3 mutations were observed in 9 and 1 patient(s), respectively. The median variant allele frequency (VAF) of the mutations was 42% (range: 22-98%), indicating that mutations in epigenetic regulators are early events and are present in the founding clone. Of the 48 mutations detected at diagnosis, only 2 were lost at relapse, highlighting the stability of these lesions during disease progression. Moreover, in 12/50 patients (24%), mutations in epigenetic regulators were acquired at relapse. All but one of these patients already had a mutation in another epigenetic regulator at diagnosis. We did not identify patients who acquired DNMT3A, TET2 or ASXL1 mutations during disease progression. However, mutations in WT1, IDH1, and KDM6A were gained in several patients at relapse. In 4/13 cases, the gained mutations were already detectable at low levels at diagnosis (median VAF: 2.9%, range: 0.3-6%, mean coverage at the investigated sites: 629x, range: 85-1625x). We also evaluated the presence of these mutations in remission: In 18 out of 36 (50%) patients, some of the mutations affecting DNMT3A (n=14), TET2 (n=3) or IDH2 (n=2) were present at a VAF 〉 5% (median: 22%, range: 9-75%) in cytomorphologically defined complete remission, suggesting the persistence of pre-leukemic clones with limited response to chemotherapy. Longer relapse-free survival was observed in patients with DNMT3A mutations that did not persist at remission (np-DNMT3A) in comparison to patients with persisting DNMT3A mutations (p-DNMT3A). Remarkably, the latter group was enriched for patients that also harbored FLT3 internal tandem duplications (ITDs) (10/14 versus 1/8; Fisher's exact test, p=0.02). The vast majority of p-DNMT3A showed alterations of R882, whereas mutations at other positions of DNMT3A tended to be undetectable in remission. When including the NPM1 status, only 1/8 patient with np-DNMT3A was triple mutated, compared to 11/14 patients with p-DNMT3A, suggesting that co-occurrence of DNMT3A, FLT3- ITD and NPM1 c is associated with p-DNMT3A (p=0.006). In summary, we show that a high proportion of patients (72%) with relapsing CN-AML is affected by mutations in genes linked to epigenetic regulation. The stability of these mutations between diagnosis and relapse in combination with their acquisition during disease progression, as well as the frequent persistence of DNMT3A, TET2 and IDH2 mutations during remission underscore the necessity for new therapeutic approaches. The striking association of DNMT3A R882 mutations with NPM1 c and FLT3 -ITD suggest a unique mechanism of oncogenic collaboration. Persistence of DNMT3A R882 mutations may indicate a fertile ground for relapse. Further studies will be required to clarify whether the actual relapse arises from a preleukemic clone harboring only the founder mutation or from residual leukemia cells containing several genetic lesions. Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2015
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Blood, American Society of Hematology, Vol. 124, No. 21 ( 2014-12-06), p. 17-17
    Abstract: The evolution of acute myeloid leukemia (AML) has been previously described either in studies of large patient cohorts with focus on only a restricted number of AML-associated genes or in smaller series of relapsed patients studied by genome-wide techniques. We set out to comprehensively characterize the genetic evolution in a large AML cohort in order to understand molecular mechanisms of relapse and therapy-resistance. We performed exome-sequencing of matched bone marrow or peripheral blood samples taken at diagnosis, complete remission and relapse from 47 patients with cytogenetically normal AML (CN-AML). Samples were collected within the German Cancer Consortium (DKTK) at the partner sites in Berlin and Munich. The median age at diagnosis was 65y (range: 21-89y). FLT3 internal tandem duplication (ITD) and NPM1 mutation status at diagnosis was available for all but one patient (FLT3-ITD-/NPM1-, n=5; FLT3-ITD+/NPM1-, n=9; FLT3-ITD-/NPM1+, n=16; FLT3-ITD+/NPM1+, n=16). On average, 96% of the target sequence was covered at least 10-fold (minimum coverage defined for variant calling). The following criteria were applied for identification of somatic mutations: Variant allele frequency (VAF) ³20% either at diagnosis or at relapse and VAF 〈 5% at remission. We filtered for mutations with translational consequences, excluded known error-prone genes and dismissed common germline polymorphisms (dbSNP 138; MAF³1%). Thereby, we identified a total of 777 genes to be somatically mutated, of which 104 were recurrently affected. Mutation frequencies of 18 genes found mutated both in our cohort and in 86 CN-AML patients reported by The Cancer Genome Atlas (TCGA, NEJM 2013) are shown in Figure 1 A. Seven genes were recurrently altered only at diagnosis (e.g. CBL) and 16 genes were recurrently altered only at relapse in our cohort (e.g. KDM6A, SF3B1 and SRSF2). At diagnosis, the number of somatic mutations per patient varied between 5 and 34 (median: 17). At relapse, the number of mutations ranged from 2 to 57 (median: 17). Mutations in several AML-associated genes (e.g. DNMT3A, RUNX1, IDH1 and IDH2) showed similar VAFs at diagnosis and relapse in the vast majority of cases. In contrast, WT1 mutations were gained at relapse in 4/6 (67%) patients and FLT3 point mutations were below 5% VAF at relapse in 7/12 (58%) patients initially positive for these variants. In total, 92 mutations present at diagnosis were lost at relapse (VAF 〈 5%) while 116 mutations were acquired during disease progression. Based on cytogenetics and copy number alteration (CNA) analysis of exome data, we detected partial or complete gain/loss of chromosomes. Five patients (11%) acquired chromosomal alterations during disease progression. Trisomy 8 was the only recurrent chromosomal abnormality gained in 3 patients (6%) at relapse. To detect pre-leukemic lesions, we evaluated our exome data for the persistence of mutations in 40 AML-associated driver genes during remission. We limited our analysis to mutations previously reported as confirmed somatic (COSMIC annotation) to avoid confounding with private germline variants. Strikingly, 25/47 (53%) of patients carried non-silent mutations in these genes with VAF 〉 5% (median: 31%, range: 9-75%) at remission (30 mutations in total). In contrast, other mutations (e.g. in FLT3 or NRAS) found in these patients could not be detected at remission, consistent with therapy response. Based on VAF, 23/30 (77%) persistent mutations showed a dynamic pattern over the course of disease with a relative change of 〉 20%, likely due to partial eradication/expansion of leukemic or pre-leukemic clones. Persistent mutations in DNMT3A, TET2, RUNX1 and IDH2 were observed in 28%, 11%, 6% and 4% of patients in our cohort, respectively (Figure 1 B). Among patients with DNMT3A mutation at diagnosis, those with persistent mutations tended to relapse earlier (n=13; median time to relapse 270 days; range: 81-586) than patients without detectable DNMT3A mutations at remission (n=7; median time to relapse 508 days; range: 235-1697; p=0.111). Our findings provide insights into the genetic evolution during the course of disease in a large cohort of relapsed CN-AML. Information about the dynamics of genetic lesions (e.g. persistent or relapse-specific mutations) may have prognostic significance and allow for tailored approaches to treat or to prevent relapse of AML. Figure 1 Figure 1. Figure 2 Figure 2. Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2014
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...