GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 81, No. 18 ( 2021-09-15), p. 4808-4821
    Abstract: In studies of electron and proton radiotherapy, ultrahigh dose rates of FLASH radiotherapy appear to produce fewer toxicities than standard dose rates while maintaining local tumor control. FLASH-proton radiotherapy (F-PRT) brings the spatial advantages of PRT to FLASH dose rates ( & gt;40 Gy/second), making it important to understand if and how F-PRT spares normal tissues while providing antitumor efficacy that is equivalent to standard-proton radiotherapy (S-PRT). Here we studied PRT damage to skin and mesenchymal tissues of muscle and bone and found that F-PRT of the C57BL/6 murine hind leg produced fewer severe toxicities leading to death or requiring euthanasia than S-PRT of the same dose. RNA-seq analyses of murine skin and bone revealed pathways upregulated by S-PRT yet unaltered by F-PRT, such as apoptosis signaling and keratinocyte differentiation in skin, as well as osteoclast differentiation and chondrocyte development in bone. Corroborating these findings, F-PRT reduced skin injury, stem cell depletion, and inflammation, mitigated late effects including lymphedema, and decreased histopathologically detected myofiber atrophy, bone resorption, hair follicle atrophy, and epidermal hyperplasia. F-PRT was equipotent to S-PRT in control of two murine sarcoma models, including at an orthotopic intramuscular site, thereby establishing its relevance to mesenchymal cancers. Finally, S-PRT produced greater increases in TGFβ1 in murine skin and the skin of canines enrolled in a phase I study of F-PRT versus S-PRT. Collectively, these data provide novel insights into F-PRT-mediated tissue sparing and support its ongoing investigation in applications that would benefit from this sparing of skin and mesenchymal tissues. Significance: These findings will spur investigation of FLASH radiotherapy in sarcoma and additional cancers where mesenchymal tissues are at risk, including head and neck cancer, breast cancer, and pelvic malignancies.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2021
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Nature Cell Biology, Springer Science and Business Media LLC, Vol. 24, No. 6 ( 2022-06), p. 940-953
    Abstract: Bidirectional signalling between the tumour and stroma shapes tumour aggressiveness and metastasis. ATF4 is a major effector of the Integrated Stress Response, a homeostatic mechanism that couples cell growth and survival to bioenergetic demands. Using conditional knockout ATF4 mice, we show that global, or fibroblast-specific loss of host ATF4, results in deficient vascularization and a pronounced growth delay of syngeneic melanoma and pancreatic tumours. Single-cell transcriptomics of tumours grown in Atf4 Δ/Δ mice uncovered a reduction in activation markers in perivascular cancer-associated fibroblasts (CAFs). Atf4 Δ/Δ fibroblasts displayed significant defects in collagen biosynthesis and deposition and a reduced ability to support angiogenesis. Mechanistically, ATF4 regulates the expression of the Col1a1 gene and levels of glycine and proline, the major amino acids of collagen. Analyses of human melanoma and pancreatic tumours revealed a strong correlation between ATF4 and collagen levels. Our findings establish stromal ATF4 as a key driver of CAF functionality, malignant progression and metastasis.
    Type of Medium: Online Resource
    ISSN: 1465-7392 , 1476-4679
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2022
    detail.hit.zdb_id: 1494945-3
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 82, No. 12_Supplement ( 2022-06-15), p. 3304-3304
    Abstract: Purpose: To investigate the transcriptomic changes induced by FLASH proton radiotherapy (F-PRT) that could be responsible for the protection of normal epithelial tissues by radiation-induced toxicities as have been previously shown by us and others. Methods: C57BL/6J mice received 30 Gy of F-PRT or S-PRT to the hind leg at respective dose rates of 69-124 Gy/sec or 0.39-0.65 Gy/sec. RNA sequencing was performed using full-thickness leg skin at 5 days after radiation revealing major pathways regulated by F-PRT and S-PRT. In an endeavor to identify the full repertoire of cells and gene expression profiles that are involved in the sparing effects of FLASH PRT, we expanded our studies to include single-cell RNA sequencing (sc-RNA seq) and examined additional time points such as Day 2 and Day 10 after radiation. Single-cell transcriptome libraries were generated on a 10X Genomics Chromium system. Datasets were acquired from cell samples derived and sequenced from pooled skin samples of three mice per group. Skin from the sequenced mice was also embedded for spatial analysis of gene expression. Results: RNA sequencing revealed that F-PRT uniquely upregulates almost four times more genes compared to S-PRT (F-PRT-uniquely upregulated 489 genes vs S-PRT-uniquely upregulated 129 genes). Also, F-PRT uniquely downregulated 178 genes, compared to the 125 genes uniquely downregulated by S-PRT. GO analysis demonstrates that the keratinization and apoptosis pathways are uniquely upregulated by S-PRT, whereas F-PRT uniquely upregulates genes involved in vascular development pathway. During submission of the abstract, analysis of sc-RNA seq samples was pending. Conclusion: Our comprehensive studies inform on the transcriptomic profiling of skin cell populations that are affected by F-PRT vs S-PRT; this insight will further spur discoveries on the biology of FLASH radiotherapy effects. Citation Format: Anastasia Velalopoulou, Ilias V. Karagounis, Giorgos Skoufos, Ioannis I. Verginadis, Michele Kim, Khayrullo Shoniyozov, Artemis G. Hatzigeorgiou, Eric Diffenderfer, Lei Dong, James Metz, Constantinos Koumenis, Keith A. Cengel, Amit Maity, Theresa M. Busch. Gene expression profiling of full-thickness skin after FLASH proton radiotherapy [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2022; 2022 Apr 8-13. Philadelphia (PA): AACR; Cancer Res 2022;82(12_Suppl):Abstract nr 3304.
    Type of Medium: Online Resource
    ISSN: 1538-7445
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2022
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 82, No. 12_Supplement ( 2022-06-15), p. 3178-3178
    Abstract: Despite recent advances in prevention and treatment, including immune checkpoint inhibitors, malignant melanoma remains a particularly aggressive and deadly malignancy, which is partly attributed to its highly heterogeneous TME. However, malignant cells exhibit altered signaling pathways, which enables them to adapt to both cell-intrinsic and extrinsic stressors within TME. The activating transcription factor 4 (ATF4) is a master transcriptional effector of the Integrated Stress Response (ISR), a homeostatic mechanism coupling cell growth and survival to bioenergetic demands. We and others have established a critical tumor cell-intrinsic role of ATF4 which culminates in the promotion of primary tumor growth and in the establishment of micro- and macro-metastases in xenograft, allograft and transgenic models. However, the potential roles of the ISR and particularly of ATF4-mediated responses in host-dependent, tumor-related processes, have not been yet extensively investigated. Using novel conditional knockout ATF4 mouse models, we show that global loss of host ATF4 results in deficient tumor vascularization and a pronounced tumor growth delay in syngeneic melanoma and pancreatic tumor models. Immunofluorescence analysis revealed a severely impaired angiogenic phenotype in tumors grown in ATF4 KO mice which was accompanied by deficiencies in markers of CAF activation. Single-cell transcriptomic analysis of B16F10 melanoma tumors further localized this defect to a distinct CAF population, previously identified as vascular CAFs (vCAFs), and revealed a significant reduction in the expression of extracellular matrix components, primarily type I collagen, in tumors grown in ATF4 KO mice. Intriguingly, we identified a multifaceted impairment of the collagen biosynthetic pathway with the ATF4 to directly regulate the expression of the Col1a1 gene as well as the intracellular levels of glycine and proline, the major amino acids comprising collagen fibers. Moreover, we showed that the ATF4-deficient vCAFs secrete significantly lower levels of angiogenic factors (i.e., VEGF, SDF-1 etc.) in the perivascular area leading to an abnormal angiogenesis and significant attenuation of tumor growth. Specific deletion of ATF4 in the fibroblast compartment (Col1a1 promoter) produced a similar tumor growth delay as in the global ATF4 KO mice, and notably, co-injection of fibroblasts from ATF4-proficient mice led to significant recovery of tumor growth rates in ATF4-deficient mice. Finally, analysis of human melanoma and pancreatic tumor samples revealed a strong correlation between ATF4 and collagen levels and between an ISR gene signature and expression of collagen and CAF activation genes. Our findings uncover a novel role of stromal ATF4 in shaping CAF functionality, a key driver of disease progression, metastasis, and therapy resistance. Citation Format: Ioannis I. Verginadis, Harris Avgousti, Kyle Kim, Giorgos Skoufos, Frank Chinga, Nektaria Maria Leli, Ilias V. Karagounis, Brett I. Bell, Anastasia Velalopoulou, Victoria S. Wu, Yang Li, Jiangbin Ye, David A. Scott, Andrei L. Osterman, Arjun Sengupta, Aalim Weljie, Artemis G. Hatzigeorgiou, Sandra Ryeom, Alan J. Diehl, Serge Y. Fuchs, Ellen Puré, Constantinos Koumenis. A stromal integrated stress response activates perivascular cancer-associated fibroblasts to drive angiogenesis and tumor progression [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2022; 2022 Apr 8-13. Philadelphia (PA): AACR; Cancer Res 2022;82(12_Suppl):Abstract nr 3178.
    Type of Medium: Online Resource
    ISSN: 1538-7445
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2022
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: International Journal of Radiation Oncology*Biology*Physics, Elsevier BV, Vol. 119, No. 4 ( 2024-07), p. 1234-1247
    Type of Medium: Online Resource
    ISSN: 0360-3016
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2024
    detail.hit.zdb_id: 1500486-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...