GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Online Resource  (2)
  • American Association for Cancer Research (AACR)  (2)
  • Koschmieder, Steffen  (2)
Material
  • Online Resource  (2)
Publisher
  • American Association for Cancer Research (AACR)  (2)
Language
Years
Subjects(RVK)
  • 1
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 23, No. 9 ( 2017-05-01), p. 2289-2300
    Abstract: Purpose: BCR-ABL kinase inhibitors are employed successfully for chronic myeloid leukemia (CML) treatment. However, resistant disease and persistence of BCR-ABL1–independent leukemia stem and progenitor cells (LSPC) remain clinical challenges. The receptor tyrosine kinase Axl can mediate survival and therapy resistance of different cancer cells. We investigated the therapeutic potential of Axl inhibition in CML. Experimental Design: We used primary cells from patients with CML and TKI-sensitive and -resistant BCR-ABL1+ CML cell lines and a novel ponatinib-resistant cell line KCL-22 PonR. We analyzed the effects of genetic and pharmacologic Axl blockade by the small-molecule Axl inhibitor BGB324 in vitro and in vivo. In BCR-ABL1–unmutated cells, we also investigated BGB324 in combination with imatinib. Results: We demonstrate overexpression of Axl receptor tyrosine kinase in primary cells of patients with CML compared with healthy individuals and a further increase of Axl expression in BCR-ABL TKI-resistant patients. We show that Axl blockage decreased growth of BCR-ABL TKI-sensitive CML cells including CD34+ cells and exerts additive effects with imatinib via inhibition of Stat5 activation. BGB324 also inhibits BCR-ABL TKI-resistant cells, including T315I-mutated and ponatinib-resistant primary cells. BGB324 exerted therapeutic effects in BCR-ABL1 T315I-mutated and ponatinib-resistant preclinical mouse models. Notably, BGB324 does not inhibit BCR-ABL1 and consequently inhibits CML independent of BCR-ABL1 mutational status. Conclusions: Our data show that Axl inhibition has therapeutic potential in BCR-ABL TKI-sensitive as well as -resistant CML and support the need for clinical trials. Clin Cancer Res; 23(9); 2289–300. ©2016 AACR.
    Type of Medium: Online Resource
    ISSN: 1078-0432 , 1557-3265
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2017
    detail.hit.zdb_id: 1225457-5
    detail.hit.zdb_id: 2036787-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 75, No. 11 ( 2015-06-01), p. 2187-2199
    Abstract: Ruxolitinib is a small-molecule inhibitor of the JAK kinases, which has been approved for the treatment of myelofibrosis, a rare myeloproliferative neoplasm (MPN), but clinical trials are also being conducted in inflammatory-driven solid tumors. Increased infection rates have been reported in ruxolitinib-treated patients, and natural killer (NK) cells are immune effector cells known to eliminate both virus-infected and malignant cells. On this basis, we sought to compare the effects of JAK inhibition on human NK cells in a cohort of 28 MPN patients with or without ruxolitinib treatment and 24 healthy individuals. NK cell analyses included cell frequency, receptor expression, proliferation, immune synapse formation, and cytokine signaling. We found a reduction in NK cell numbers in ruxolitinib-treated patients that was linked to the appearance of clinically relevant infections. This reduction was likely due to impaired maturation of NK cells, as reflected by an increased ratio in immature to mature NK cells. Notably, the endogenous functional defect of NK cells in MPN was further aggravated by ruxolitinib treatment. In vitro data paralleled these in vivo results, showing a reduction in cytokine-induced NK cell activation. Further, reduced killing activity was associated with an impaired capacity to form lytic synapses with NK target cells. Taken together, our findings offer compelling evidence that ruxolitinib impairs NK cell function in MPN patients, offering an explanation for increased infection rates and possible long-term side effects associated with ruxolitinib treatment. Cancer Res; 75(11); 2187–99. ©2015 AACR.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2015
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...