GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Online Resource  (2)
  • Hoff, Fieke W  (2)
  • Jitkova, Yulia  (2)
  • MacLean, Neil  (2)
  • 2015-2019  (2)
  • Medicine  (2)
Material
  • Online Resource  (2)
Language
Years
  • 2015-2019  (2)
Year
Subjects(RVK)
  • Medicine  (2)
RVK
  • 1
    In: Blood, American Society of Hematology, Vol. 134, No. Supplement_1 ( 2019-11-13), p. 729-729
    Abstract: Acute myeloid leukemia (AML) cells and stem cells have unique mitochondrial characteristics with an increased reliance on oxidative phosphorylation (OXPHOS). To identify new biological vulnerabilities in the mitochondrial proteome of AML cells, we conducted an shRNA screen and identified neurolysin (NLN), a zinc metalloprotease whose mitochondrial function is not well understood and whose role in AML has not been previously reported. To begin our investigation into the role of NLN in AML, we analyzed NLN gene expression in a database of 536 AML and 73 normal bone marrow samples. NLN was overexpressed in 41% of AML samples. Overexpression of NLN in primary AML cells compared to normal hematopoietic cells was confirmed by immunoblotting. To validate the results of the screen and to determine whether NLN is required for AML growth and viability, we knocked down NLN in the leukemia cell lines OCI-AML2, MV4-11, NB4, and TEX with shRNA. NLN knockdown reduced leukemia growth and viability by 50-70%. Moreover, knockdown of NLN in AML cells reduced the clonogenic growth of leukemic cells in vitro and the engraftment of AML cells into mouse marrow after five weeks by up to 80% and 85%, respectively. The mitochondrial function of NLN is largely unknown, so we identified NLN's mitochondrial protein interactors in T-REx HEK293 cells using proximity-dependent biotin labeling (BioID) coupled with mass spectrometry (MS). This screen identified 73 mitochondrial proteins that preferentially interacted with NLN and were enriched for functions including respiratory chain complex assembly, respiratory electron transport, and mitochondrion organization. Therefore, we assessed the effects of NLN knockdown on OXPHOS. NLN knockdown reduced basal and maximal oxygen consumption, but there were no changes in the levels of individual respiratory chain complex subunits. To understand how NLN influences OXPHOS, we examined the formation of respiratory chain supercomplexes (RCS). Respiratory chain complexes I, III, and IV assemble into higher order quaternary structures called RCS, which promote efficient oxidative metabolism. NLN knockdown significantly impaired RCS formation in T-REx HEK293, OCI-AML2, and NB4 cells, which was rescued by overexpressing wild-type shRNA-resistant NLN. RCS have not been previously studied in leukemia. Therefore, we analyzed their levels in primary AML patient samples and normal hematopoietic cells. RCS assembly was increased in a subset of AML patient samples and positively correlated with NLN protein expression (R2 = 0.83, p & lt; 0.05), suggesting that NLN mediates RCS assembly in AML. To investigate how NLN may be regulating RCS assembly, we analyzed our BioID results to identify NLN interactors that are known regulators of supercomplex formation. Among the top interactors was the known RCS regulator, LETM1. Knockdown of NLN in AML cells impaired LETM1 assembly. Of note, knockdown of LETM1 also reduced growth and oxygen consumption of AML cells. As a chemical approach to evaluate the effects of NLN inhibition on AML cells, we used the allosteric NLN inhibitor R2, (3-[(2S)-1-[(3R)-3-(2-Chlorophenyl)-2-(2-fluorophenyl)pyrazolidin-1-yl]-1-oxopropan-2-yl] -1-(adamantan-2-yl)urea), whose anti-cancer effects have not been previously reported. R2 reduced viability of AML cells, as well as two primary AML culture models, 8227 and 130578. R2 impaired RCS formation in OCI-AML2, NB4, 8227, and primary AML cells. Moreover, R2 reduced the CD34+CD38- stem cell enriched population in 8227 cells, reduced LETM1 complex assembly, and impaired OXPHOS in OCI-AML2 and 8227 cells. Finally, we assessed the effects of inhibiting NLN in mice engrafted with primary AML and normal hematopoietic cells in vivo. Treatment of mice with R2 reduced the leukemic burden in these mice without toxicity. Moreover, inhibiting NLN targeted the AML stem cells as evidenced by reduced engraftment in secondary experiments. In contrast, inhibiting NLN did not reduce the engraftment of normal hematopoietic cells. Collectively, these results demonstrate that inhibition of NLN preferentially targets AML cells and stem cells as compared to normal hematopoietic cells. In summary, we defined a novel role for NLN in RCS formation. We show that RCS are necessary for oxidative metabolism in AML and highlight NLN inhibition as a potential therapeutic strategy. Disclosures Minden: Trillium Therapetuics: Other: licensing agreement. Chan:Agios: Honoraria; AbbVie Pharmaceuticals: Research Funding; Celgene: Honoraria, Research Funding. Schimmer:Medivir Pharmaceuticals: Research Funding; Novartis Pharmaceuticals: Consultancy; Jazz Pharmaceuticals: Consultancy; Otsuka Pharmaceuticals: Consultancy.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2019
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Blood, American Society of Hematology, Vol. 132, No. Supplement 1 ( 2018-11-29), p. 1335-1335
    Abstract: Our group and others have shown that acute myeloid leukemia (AML) cells have unique mitochondrial characteristics with an increased reliance on oxidative phosphorylation. Through an shRNA screen for new biological vulnerabilities in the mitochondria of AML cells, we identified the mitochondrial protease, neurolysin (NLN). NLN is a zinc metalloprotease whose mitochondrial function is not well understood and whose role in AML growth and viability has not been previously reported. We analyzed the expression of NLN in AML cells and normal hematopoietic cells. By immunoblotting, NLN was overexpressed in 80% of primary AML patient samples compared to normal hematopoietic cells. Likewise, in an analysis of gene expression databases, NLN mRNA was increased in a subset of AML patient samples, compared to normal hematopoietic cells. Next, we assessed the effects of knocking down NLN in AML cell lines (OCI-AML2, NB4, and MV4-11) using three independent shRNAs in lentiviral vectors. Target knockdown was confirmed by immunoblotting. NLN knockdown reduced growth in all three tested cell lines by 50-70%. NLN knockdown also targeted the leukemia initiating cells in vitro and in vivo as NLN knockdown reduced the clonogenic growth of AML cells (40-75%) and the engraftment of TEX cells into immune deficient mice by 85%. Taken together, these data suggest that NLN is necessary for the growth of AML cells. The role of NLN in the mitochondria is not well understood. To gain insight into NLN's mitochondrial function, we investigated NLN's protein interactors using proximity-dependent biotin labeling (BioID). The top hits in the protein-protein interaction screen were mitochondrial matrix proteins and respiratory chain subunits were particularly enriched. Therefore, we measured the effects of NLN knockdown on mitochondrial structure and function. Knockdown of NLN in AML cells reduced basal oxygen consumption without altering reactive oxygen species generation, mitochondrial membrane potential, or mitochondrial mass. No changes were seen in the total levels of respiratory chain complex subunits as measured by immunoblotting on denaturing gels. Respiratory chain complexes assemble into higher order supercomplex structures that maintain the integrity of the mitochondria and promote efficient oxidative metabolism. Therefore, we tested whether NLN is required for the formation of respiratory chain supercomplexes. As measured by blue native polyacrylamide gel electrophoresis, knockdown of NLN impaired the formation of respiratory chain supercomplexes. Through our BioID analysis, we also identified the mitochondrial Ca2+/H+ antiporter, LETM1 (leucine zipper-EF-hand containing transmembrane protein 1) as a top interactor with NLN. LETM1 is a known regulator of respiratory chain supercomplex formation. We showed that knockdown of NLN impaired LETM1 assembly, potentially explaining how NLN regulates supercomplex formation. Finally, we tested if hypoxia influences respiratory chain supercomplex formation and sensitivity to NLN inhibition. OCI-AML2 cells cultured for 72 hours under hypoxic conditions (0.2% O2) showed impaired assembly of respiratory chain supercomplexes, decreased levels of LETM1 protein, and resistance to NLN knockdown. Thus, we discovered that the mitochondrial protease NLN regulates oxidative metabolism by controlling the assembly of respiratory chain supercomplexes. Moreover, we highlight NLN as a potential new therapeutic target for AML. Disclosures Schimmer: Otsuka Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees; Novartis: Consultancy, Membership on an entity's Board of Directors or advisory committees; Medivir AB: Research Funding; Jazz Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2018
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...