GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Online Resource  (15)
  • Gao, Hongwei  (15)
  • Yang, Shilin  (15)
  • 1
    In: Phytotherapy Research, Wiley
    Abstract: Acute kidney injury (AKI) is a common clinical condition associated with increased incidence and mortality rates. Hederasaponin C (HSC) is one of the main active components of Pulsatilla chinensis (Bunge) Regel. HSC possesses various pharmacological activities, including anti‐inflammatory activity. However, the protective effect of HSC against lipopolysaccharide (LPS)‐induced AKI in mice remains unclear. Therefore, we investigated the protective effect of HSC against LPS‐induced renal inflammation and the underlying molecular mechanisms. Herein, using MTT and LDH assays to assess both cell viability and LDH activity; using dual staining techniques to identify different cell death patterns; conducting immunoblotting, QRT‐PCR, and immunofluorescence analyses to evaluate levels of protein and mRNA expression; employing immunoblotting, molecular docking, SPR experiments, and CETSA to investigate the interaction between HSC and TLR4; and studying the anti‐inflammatory effects of HSC in the LPS‐induced AKI. The results indicate that HSC inhibits the expression of TLR4 and the activation of NF‐κB and PIP2 signaling pathways, while simultaneously suppressing the activation of the NLRP3 inflammasome. In animal models, HSC ameliorated LPS‐induced AKI and diminished inflammatory response and the level of renal injury markers. These findings suggest that HSC has potential as a therapeutic agent to mitigate sepsis‐related AKI.
    Type of Medium: Online Resource
    ISSN: 0951-418X , 1099-1573
    Language: English
    Publisher: Wiley
    Publication Date: 2023
    detail.hit.zdb_id: 1493490-5
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Chinese Medicine, Springer Science and Business Media LLC, Vol. 15, No. 1 ( 2020-12)
    Abstract: Cryptotanshinone (CPT), as a major component of Salvia miltiorrhiza Bunge (Danshen), displays many pharmacological activities including anti-inflammatory effects. However, the exact cellular and molecular mechanisms of the anti-inflammatory activities of CPT remain to be elucidated. The present study was aimed to clarify its mechanisms on lipopolysaccharide (LPS)-induced inflammatory responses in mouse macrophages, RAW264.7 cells. Methods In the current study, the anti-inflammatory properties of CPT were evaluated using LPS-stimulated RAW264.7 cell model. MTT assay was used to determine the viability of RAW264.7 cells. The anti-inflammatory effects of CPT were measured based on the detection of nitric oxide (NO) production (Griess and flow cytometry assay), and tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) release (ELISA). Cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) enzyme expressions were also determined by western blotting. Besides, by using flow cytometry, we also evaluated the effect of CPT on LPS-induced calcium influx. Finally, the underlying anti-inflammatory mechanisms of CPT were investigated using western blotting to assess the protein levels of toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88), phosphatidylinositol 3-kinase (PI3K)/AKT, nuclear factor erythroid 2 related factor 2 (Nrf2), mitogen-activated protein kinase (MAPK), and nuclear factor-kappa B (NF-κB) pathways. Results Our data showed that CPT inhibited LPS-induced pro-inflammatory cytokine release like IL-6, and TNF-α, as well as NO production. It displayed a significant inhibitory effect on the protein expressions such as iNOS, COX-2, NF-κB pathway like inhibitor of kappa B kinase (IKK)α/β, inhibitor of kappa B (IκB)-α and NF-κB/p65, PI3K/AKT pathway like PI3K and AKT, and MAPK pathway like c-Jun N-terminal kinase (JNK)1/2, extracellular signal-regulated kinase (ERK)1/2, and p38, in LPS-stimulated RAW264.7 macrophages. Moreover, the immunofluorescence results indicated that CPT suppressed NF-κB/p65 translocation from the cytoplasm into the nucleus. Further investigations showed that CPT treatment increased NAD(P)H quinone oxidoreductase-1 (NQO1) and heme oxygenase-1 (HO-1) expressions together with its upstream mediator, Nrf2. In addition, CPT inhibited LPS-induced toll-like receptor 4 (TLR4) and MyD88 expressions in RAW264.7 macrophages. Conclusions Collectively, we suggested that CPT exerted significant anti-inflammatory effects via modulating TLR4-MyD88/PI3K/Nrf2 and TLR4-MyD88/NF-κB/MAPK pathways.
    Type of Medium: Online Resource
    ISSN: 1749-8546
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2020
    detail.hit.zdb_id: 2260322-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Frontiers Media SA ; 2022
    In:  Frontiers in Immunology Vol. 13 ( 2022-2-25)
    In: Frontiers in Immunology, Frontiers Media SA, Vol. 13 ( 2022-2-25)
    Abstract: Gene transcription is governed by epigenetic regulation that is essential for the pro-inflammatory mediators surge following pathological triggers. Acute lung injury (ALI) is driven by pro-inflammatory cytokines produced by the innate immune system, which involves the nod-like receptor 3 (NLRP3) inflammasome and nuclear factor-κB (NF-κB) pathways. These two pathways are interconnected and share a common inducer the phosphatidylinositol 4,5-bisphosphate (PIP2), an epigenetic regulator of (Ribosomal ribonucleic acid (rRNA) gene transcription, to regulate inflammation by the direct inhibition of NF-κB phosphorylation and NLRP3 inflammasome activation. Herein, we report that hederasaponin C (HSC) exerted a therapeutic effect against ALI through the regulation of the PIP2/NF-κB/NLRP3 signaling pathway. In lipopolysaccharide (LPS)/lipopolysaccharide + adenosine triphosphate (LPS+ATP)-stimulated macrophages, our results showed that HSC remarkably inhibited the secretion of interleukin-6 (IL-6), IL-1β, and tumor necrosis factor-α (TNF-α). Moreover, HSC inhibited NF-κB/p65 nuclear translocation and the binding of PIP2 to transforming growth factor-β activated kinase 1 (TAK1). The intracellular calcium (Ca 2+ ) level was decreased by HSC via the PIP2 signaling pathway, which subsequently inhibited the activation of NLRP3 inflammasome. HSC markedly alleviated LPS-induced ALI, restored lung function of mice, and rescued ALI-induced mice death. In addition, HSC significantly reduced the level of white blood cells (WBC), neutrophils, and lymphocytes, as well as pro-inflammatory mediators like IL-6, IL-1β, and TNF-α. Hematoxylin and eosin (H & amp;E) staining results suggested HSC has a significant therapeutic effect on lung injury of mice. Interestingly, the PIP2/NF-κB/NLRP3 signaling pathway was further confirmed by the treatment of HSC with ALI, which is consistent with the treatment of HSC with LPS/LPS+ATP-stimulated macrophages. Overall, our findings revealed that HSC demonstrated significant anti-inflammatory activity through modulating the PIP2/NF-κB/NLRP3 axis in vitro and in vivo , suggesting that HSC is a potential therapeutic agent for the clinical treatment of ALI.
    Type of Medium: Online Resource
    ISSN: 1664-3224
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2022
    detail.hit.zdb_id: 2606827-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Scientific Reports, Springer Science and Business Media LLC, Vol. 9, No. 1 ( 2019-10-21)
    Abstract: Inflammation is a complex physiological process that poses a serious threat to people’s health. However, the potential molecular mechanisms of inflammation are still not clear. Moreover, there is lack of effective anti-inflammatory drugs that meet the clinical requirement. Procyanidin A1 (PCA1) is a monomer component isolated from Procyanidin and shows various pharmacological activities. This study further demonstrated the regulatory role of PCA1 on lipopolysaccharide (LPS)-stimulated inflammatory response and oxidative stress in RAW264.7 cells. Our data showed that PCA1 dramatically attenuated the production of pro-inflammatory cytokines such as NO, iNOS, IL-6, and TNF-α in RAW264.7 cells administrated with LPS. PCA1 blocked IκB-α degradation, inhibited IKKα/β and IκBα phosphorylation, and suppressed nuclear translocation of p65 in RAW264.7 cells induced by LPS. PCA1 also suppressed the phosphorylation of JNK1/2, p38, and ERK1/2 in LPS-stimulated RAW264.7 cells. In addition, PCA1 increased the expression of HO-1, reduced the expression of Keap1, and promoted Nrf2 into the nuclear in LPS-stimulated RAW264.7 cells. Cellular thermal shift assay indicated that PCA1 bond to TLR4. Meanwhile, PCA1 inhibited the production of intracellular ROS and alleviated the depletion of mitochondrial membrane potential in vitro . Collectively, our data indicated that PCA1 exhibited a significant anti-inflammatory effect, suggesting that it is a potential agent for the treatment of inflammatory diseases.
    Type of Medium: Online Resource
    ISSN: 2045-2322
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2019
    detail.hit.zdb_id: 2615211-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Journal of Functional Foods, Elsevier BV, Vol. 73 ( 2020-10), p. 104145-
    Type of Medium: Online Resource
    ISSN: 1756-4646
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2020
    detail.hit.zdb_id: 2467241-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Chinese Medicine, Springer Science and Business Media LLC, Vol. 17, No. 1 ( 2022-02-19)
    Abstract: Lung cancer is the leading cause of cancer mortality worldwide, and most of the patients after treatment with EGF-TKIs develop drug resistance, which is closely correlated with EMT. Cucurbitacin B (CuB) is a natural product of the Chinese herb Cucurbitaceae plant, which has a favorable role in anti-inflammation and anti-cancer activities. However, the effect of CuB on EMT is still far from fully explored. In this study, the inhibition effect of CuB on EMT was investigated. Methods In this study, TGF-β1 was used to induce EMT in A549 cells. MTS assay was used to detect the cell viability of CuB co-treated with TGF-β1. Wound healing assay and transwell assay were used to determine the migration and invasion capacity of cells. Flow cytometry and fluorescence microscope were used to detect the ROS level in cells. Western blotting assay and immunofluorescence assay were used to detect the proteins expression. Gefitinib was used to establish EGF-TKI resistant NSCLC cells. B16-F10 intravenous injection mice model was used to evaluate the effect of CuB on lung cancer metastasis in vivo. Caliper IVIS Lumina and HE staining were used to detect the lung cancer metastasis of mice. Results In this study, the results indicated that CuB inhibited TGF-β1-induced EMT in A549 cells through reversing the cell morphology changes of EMT, increasing the protein expression of E-cadherin, decreasing the proteins expression of N-cadherin and Vimentin, suppressing the migration and invasion ability. CuB also decreased the ROS production and p-PI3K, p-Akt and p-mTOR expression in TGF-β1-induced EMT in A549 cells. Furthermore, Gefitinib resistant A549 cells (A549-GR) were well established, which has the EMT characteristics, and CuB could inhibit the EMT in A549-GR cells through ROS and PI3K/Akt/mTOR pathways. In vivo study showed that CuB inhibited the lung cancer metastasis effectively through intratracheal administration. Conclusion CuB inhibits EMT in TGF-β1-induced A549 cells and Gefitinib resistant A549 cells through decreasing ROS production and PI3K/Akt/mTOR signaling pathway. In vivo study validated that CuB inhibits lung cancer metastasis in mice. The study may be supporting CuB as a promising therapeutic agent for NSCLC and Gefitinib resistant NSCLC.
    Type of Medium: Online Resource
    ISSN: 1749-8546
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2022
    detail.hit.zdb_id: 2260322-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: British Journal of Pharmacology, Wiley, Vol. 174, No. 17 ( 2017-09), p. 2880-2896
    Abstract: Isoacteoside (is a phenylethanoid isolated from Monochasma savatieri Franch. ex Maxim., which is an anti‐inflammatory herb widely used in traditional Chinese medicine . However, the exact mechanism of the anti‐inflammatory activity of isoacteoside is not completely understood. In this study, its anti‐inflammatory mechanism was elucidated in mouse macrophages. Experimental Approach The expression of the NF‐κB pathway, MAPK pathway, iNOS, TNF‐α, IL‐6 and IL‐1β was evaluated using Western blotting, quantitative real‐time PCR or ELISA. TLR4 dimerization was determined by transfecting HEK293T cells with TLR4 plasmids. The in vivo anti‐inflammatory effect of isoacteoside was determined using mouse models of xylene‐induced ear oedema, LPS‐induced endotoxic shock and LPS‐induced endotoxaemia‐associated acute kidney injury (AKI). Key Results Isoacteoside suppressed COX‐2, iNOS, TNF‐α, IL‐6 and IL‐1β expression. Furthermore, isoacteoside attenuated the LPS‐induced transcriptional activity of NF‐κB by decreasing the levels of phosphorylated IκB‐α and IKK and NF‐κB/p65 nuclear translocation. In addition, isoacteoside inhibited LPS‐induced transcriptional activity of AP‐1 by reducing the levels of phosphorylated JNK1/2 and p38MAPK. Isoacteoside blocked LPS‐induced TLR4 dimerization, resulting in a reduction in the recruitment of MyD88 and TIR‐domain‐containing adapter‐inducing interferon‐β (TRIF) and the phosphorylation of TGF‐β‐activated kinase‐1 (TAK1). Pretreatment of mice with isoacteoside effectively inhibited xylene‐induced ear oedema and LPS‐induced endotoxic death and protected against LPS‐induced AKI. Conclusions and Implications Isoacteoside blocked TLR4 dimerization, which activates the MyD88–TAK1–NF‐κB/MAPK signalling cascades and TRIF pathway. Our data indicate that isoacteoside is a potential lead compound for the treatment of inflammatory diseases.
    Type of Medium: Online Resource
    ISSN: 0007-1188 , 1476-5381
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2017
    detail.hit.zdb_id: 2029728-2
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2017
    In:  Cell Death & Disease Vol. 8, No. 8 ( 2017-08-17), p. e3004-e3004
    In: Cell Death & Disease, Springer Science and Business Media LLC, Vol. 8, No. 8 ( 2017-08-17), p. e3004-e3004
    Abstract: Tanshinones belong to a group of lipophilic constituents of Salvia miltiorrhiza Bunge (Danshen), which is widely used in traditional Chinese medicine. A deluge of studies demonstrated that tanshinones exert anti-inflammatory effects, but the underlying mechanisms remain unclear to date. This study investigated the anti-inflammatory effects and mechanisms of total tanshinones (TTN). TTN suppressed the expression of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) and the secretion of TNF- α , IL-6, and IL-1 β in RAW264.7 cells, bone marrow-derived macrophages, and THP-1 cells. TTN attenuated the LPS-induced transcriptional activity of NF- κ B and decreased I κ B- α and IKK phosphorylation and NF- κ B/p65 nuclear translocation. Furthermore, TTN inhibited the LPS-induced transcriptional activity of AP-1, which was induced by the reduction of JNK1/2, ERK1/2, and p38MAPK phosphorylation. TTN blocked LPS-induced Toll-like receptor 4 (TLR4) dimerization, which consequently decreased MyD88 recruitment and TAK1 phosphorylation. In addition, TTN pretreatment effectively inhibited xylene-induced ear edema and LPS-induced septic death and improved LPS-induced acute kidney injury in mice. TTN exerts anti-inflammatory effects in vitro and in vivo by blocking TLR4 dimerization to activate MyD88–TAK1–NF- κ B/MAPK signaling cascades, which provide the molecular basis of the anti-inflammatory effect of Danshen and suggest that TTN is a potential agent for the treatment of inflammatory diseases.
    Type of Medium: Online Resource
    ISSN: 2041-4889
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2017
    detail.hit.zdb_id: 2541626-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Molecules, MDPI AG, Vol. 24, No. 24 ( 2019-12-09), p. 4502-
    Abstract: Inflammation is a common pathogenesis in many diseases. Salvia miltiorrhiza Bunge (Danshen), a traditional Chinese medicine, has been considered to have good anti-inflammatory effects. In the present study, we investigated the anti-inflammatory effect of diethyl blechnic (DB), a novel compound isolated from Danshen, and its possible mechanisms in lipopolysaccharide (LPS)-induced RAW264.7 macrophages. The results showed that DB can inhibit the LPS-induced pro-inflammatory cytokines release of prostaglandin E2 (PGE2) and mRNA expression of TNF-α, IL-6, and IL-1β. In addition, the results of the flow cytometry assay and the fluorometric intracellular ROS kit assay indicated that DB reduced the generation of ROS in LPS-stimualted RAW264.7 cells. DB reversed the LPS-induced loss of the mitochondrial membrane potential (MMP). Furthermore, DB suppressed the LPS-stimulated increased expression of Toll-like receptor 4 (TLR4), myeloid differential protein-88 (MyD88) and phosphorylation of TAK1, PI3K, and AKT. DB promoted NF-E2-related factor 2 (Nrf2) into the nucleus, increased the expression of heme oxygenase-1 (HO-1) and NAD(P)H dehydrogenase [quinone] 1 (NQO1) and reduced the expression of Keap1. In summary, DB may inhibit LPS-induced inflammation, which mainly occurs through TLR4/MyD88 and oxidative stress signaling pathways in RAW264.7 cells.
    Type of Medium: Online Resource
    ISSN: 1420-3049
    Language: English
    Publisher: MDPI AG
    Publication Date: 2019
    detail.hit.zdb_id: 2008644-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...