GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Online Resource  (5)
  • Bels, Vincent L.  (5)
  • 2005-2009  (5)
  • 1
    In: Journal of Experimental Biology, The Company of Biologists, Vol. 212, No. 16 ( 2009-08-15), p. 2501-2510
    Abstract: In most terrestrial tetrapods, the transport of prey through the oral cavity is accomplished by movements of the hyolingual apparatus. Morphological specializations of the tongue in some lizard taxa are thought to be associated with the evolution of vomerolfaction as the main prey detection mode. Moreover, specializations of the tongue are hypothesized to compromise the efficiency of the tongue during transport; thus, driving the evolution of inertial transport. Here we use a large teiid lizard, Tupinambis merianae, as a model system to test the mechanical link between prey size and the use of inertial feeding. We hypothesize that an increase in prey size will lead to the increased recruitment of the cranio-cervical system for prey transport and a reduced involvement of the tongue and the hyolingual apparatus. Discriminant analyses of the kinematics of the cranio-cervical, jaw and hyolingual systems show that the transport of large prey is indeed associated with a greater utilization of the cranio-cervical system (i.e. neck and head positioning). The tongue retains a kinematic pattern characteristic of lingual transport in other lizards but only when processing small prey. Our data provide evidence for an integration of the hyolingual and cranio-cervical systems; thus, providing partial support for an evolutionary scenario whereby the specialization of the tongue for chemoreception has resulted in the evolution of inertial transport strategies.
    Type of Medium: Online Resource
    ISSN: 1477-9145 , 0022-0949
    Language: English
    Publisher: The Company of Biologists
    Publication Date: 2009
    detail.hit.zdb_id: 1413561-9
    detail.hit.zdb_id: 1482461-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Wiley ; 2008
    In:  Journal of Experimental Zoology Part A: Ecological Genetics and Physiology Vol. 309A, No. 9 ( 2008-11), p. 563-567
    In: Journal of Experimental Zoology Part A: Ecological Genetics and Physiology, Wiley, Vol. 309A, No. 9 ( 2008-11), p. 563-567
    Abstract: Squamates are well‐known models for studying to examine locomotor and feeding behaviors in tetrapods, but studies that integrate both behavioral activities remain scarce. Anolis lizards are a classical lineage to study the evolutionary relationships between locomotor behavior and complex structural features of the habitat. Here, we analyzed prey‐capture behavior in one representative arboreal predator, Anolis carolinensis , to demonstrate the functional links between locomotor strategies and the kinematics of feeding. A. carolinensis uses two strategies to catch living insects on perches: Head‐Up Capture and Jump Capture. In both cases, lizards use lingual prehension to capture the prey and the kinematic patterns of the trophic apparatus are not significantly influenced by the selected strategies. Therefore, to capture one prey type, movements of the trophic structures are highly fixed and A. carolinensis modulates the locomotor pattern to exploit the environment. Predation behavior in A. carolinensis integrates two different behavioral patterns: locomotor plasticity of prey‐approach and biomechanical stereotypy of tongue prehension to successfully capture the prey. J. Exp. Zool. 309A:563–567, 2008 . © 2008 Wiley‐Liss, Inc.
    Type of Medium: Online Resource
    ISSN: 1932-5223 , 1932-5231
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2008
    detail.hit.zdb_id: 1474896-4
    detail.hit.zdb_id: 2099021-2
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Evolutionary Biology, Springer Science and Business Media LLC, Vol. 36, No. 4 ( 2009-12), p. 397-406
    Type of Medium: Online Resource
    ISSN: 0071-3260 , 1934-2845
    RVK:
    RVK:
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2009
    detail.hit.zdb_id: 1115-0
    detail.hit.zdb_id: 2375126-5
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    The Company of Biologists ; 2008
    In:  Journal of Experimental Biology Vol. 211, No. 1 ( 2008-01-01), p. 138-149
    In: Journal of Experimental Biology, The Company of Biologists, Vol. 211, No. 1 ( 2008-01-01), p. 138-149
    Abstract: Only a few studies on quadrupedal locomotion have investigated symmetrical and asymmetrical gaits in the same framework because the mechanisms underlying these two types of gait seem to be different and it took a long time to identify a common set of parameters for their simultaneous study. Moreover,despite the clear importance of the spatial dimension in animal locomotion,the relationship between temporal and spatial limb coordination has never been quantified before. We used anteroposterior sequence (APS) analysis to analyse 486 sequences from five malinois (Belgian shepherd) dogs moving at a large range of speeds (from 0.4 to 10.0 m s–1) to compare symmetrical and asymmetrical gaits through kinematic and limb coordination parameters. Considerable continuity was observed in cycle characteristics,from walk to rotary gallop, but at very high speeds an increase in swing duration reflected the use of sagittal flexibility of the vertebral axis to increase speed. This change occurred after the contribution of the increase in stride length had become the main element driving the increase in speed– i.e. when the dogs had adopted asymmetrical gaits. As the left and right limbs of a pair are linked to the same rigid structure, spatial coordination within pairs of limbs reflected the temporal coordination within pairs of limbs whatever the speed. By contrast, the relationship between the temporal and spatial coordination between pairs of limb was found to depend on speed and trunk length. For trot and rotary gallop, this relationship was thought also to depend on the additional action of trunk flexion and leg angle at footfall.
    Type of Medium: Online Resource
    ISSN: 1477-9145 , 0022-0949
    Language: English
    Publisher: The Company of Biologists
    Publication Date: 2008
    detail.hit.zdb_id: 1413561-9
    detail.hit.zdb_id: 1482461-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    The Company of Biologists ; 2009
    In:  Journal of Experimental Biology Vol. 212, No. 6 ( 2009-03-15), p. 768-777
    In: Journal of Experimental Biology, The Company of Biologists, Vol. 212, No. 6 ( 2009-03-15), p. 768-777
    Abstract: In tetrapods, feeding behaviour in general, and prey capture in particular,involves two anatomical systems: the feeding system and the locomotor system. Although the kinematics associated with the movements of each system have been investigated in detail independently, the actual integration between the two systems has received less attention. Recently, the independence of the movements of the jaw and locomotor systems was reported during tongue-based prey capture in an iguanian lizard (Anolis carolinensis), suggesting a decoupling between the two systems. Jaw prehension, on the other hand, can be expected to be dependent on the movements of the locomotor system to a greater degree. To test for the presence of functional coupling and integration between the jaw and locomotor systems, we used the cordyliform lizard Gerrhosaurus major as a model species because it uses both tongue and jaw prehension. Based on a 3-D kinematic analysis of the movements of the jaws, the head, the neck and the forelimbs during the approach and capture of prey, we demonstrate significant correlations between the movements of the trophic and the locomotor systems. However, this integration differs between prehension modes in the degree and the nature of the coupling. In contrast to our expectations and previous data for A. carolinensis,our data indicate a coupling between feeding and locomotor systems during tongue prehension. We suggest that the functional integration between the two systems while using the tongue may be a consequence of the relatively slow nature of tongue prehension in this species.
    Type of Medium: Online Resource
    ISSN: 1477-9145 , 0022-0949
    Language: English
    Publisher: The Company of Biologists
    Publication Date: 2009
    detail.hit.zdb_id: 1413561-9
    detail.hit.zdb_id: 1482461-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...