GLORIA

GEOMAR Library Ocean Research Information Access

You have 0 saved results.
Mark results and click the "Add To Watchlist" link in order to add them to this list.

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Online Resource  (4)
  • Aflori, Magdalena  (4)
  • 1
    In: International Journal of Molecular Sciences, MDPI AG, Vol. 24, No. 10 ( 2023-05-12), p. 8673-
    Abstract: The main strategy of this study was to combine the traditional perspective of using medicinal extracts with polymeric scaffolds manufactured by an engineering approach to fabricate a potential dressing product with antimicrobial properties. Thus, chitosan-based membranes containing S. officinalis and H. perforatum extracts were developed and their suitability as novel dressing materials was investigated. The morphology of the chitosan-based films was assessed by scanning electron microscopy (SEM) and the chemical structure characterization was performed via Fourier transform infrared spectroscopy (FTIR). The addition of the plant extracts increased the sorption capacity of the studied fluids, mainly at the membrane with S. officinalis extract. The membranes with 4% chitosan embedded with both plant extracts maintained their integrity after being immersed for 14 days in incubation media, especially in PBS. The antibacterial activities were determined by the modified Kirby–Bauer disk diffusion method for Gram-positive (S. aureus ATCC 25923, MRSA ATCC 43300) and Gram-negative (E. coli ATCC 25922, P. aeruginosa ATCC 27853) microorganisms. The antibacterial property was enhanced by incorporating the plant extracts into chitosan films. The outcome of the study reveals that the obtained chitosan-based membranes are promising candidates to be used as a wound dressing due to their good physico-chemical and antimicrobial properties.
    Type of Medium: Online Resource
    ISSN: 1422-0067
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2019364-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Gels, MDPI AG, Vol. 8, No. 8 ( 2022-07-28), p. 474-
    Abstract: Eco-innovation through the development of intelligent materials for food packaging is evolving, and it still has huge potential to improve food product safety, quality, and control. The design of such materials by the combination of biodegradable semi-synthetic polymers with natural ones and with some additives, which may improve certain functionalities in the targeted material, is continuing to attract attention of researchers. To fabricate composite films via casting from solution, followed by drying in atmospheric conditions, certain mass ratios of poly(vinyl alcohol) and chitosan were used as polymeric matrix, whereas TiO2 nanoparticles and a polyphosphonate were used as reinforcing additives. The structural confirmation, surface properties, swelling behavior, and morphology of the xerogel composite films have been studied. The results confirmed the presence of all ingredients in the prepared fabrics, the contact angle of the formulation containing poly(vinyl alcohol), chitosan, and titanium dioxide in its composition exhibited the smallest value (87.67°), whereas the profilometry and scanning electron microscopy enlightened the good dispersion of the ingredients and the quality of all the composite films. Antimicrobial assay established successful antimicrobial potential of the poly(vinyl alcoohol)/chitosan-reinforced composites films against Staphylococcus aureus, Methicillin-resistant Staphylococcus aureus (MRSA), Escherichia coli, Pseudomonas aeruginosa, and Candida albicans. Cytotoxicity tests have revealed that the studied films are non-toxic, presented good compatibility, and they are attractive candidates for packaging applications.
    Type of Medium: Online Resource
    ISSN: 2310-2861
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2813982-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Materials, MDPI AG, Vol. 15, No. 7 ( 2022-03-28), p. 2493-
    Abstract: In this study, we aim to obtain biomaterials with antibacterial properties by combining poly(vinyl alcohol) with the extracts obtained from various selected plants from Romania. Natural herbal extracts of freshly picked flowers of the lavender plant (Lavandula angustifolia) and leaves of the peppermint plant (Mentha piperita), hemp plant (Cannabis sativa L.), verbena plant (Verbena officinalis) and sage plant (Salvia officinalis folium) were selected after an intensive analyzing of diverse medicinal plants often used as antibacterial and healing agents from the country flora. The plant extracts were characterized by different methods such as totals of phenols and flavonoids content and UV-is spectroscopy. The highest amounts of the total phenolic and flavonoid contents, respectively, were recorded for Salvia officinalis. Moreover, the obtained films of poly(vinyl alcohol) (PVA) loaded with plant extracts were studied concerning the surface properties and their antibacterial or cytotoxicity activity. The Attenuated Total Reflection Fourier Transform Infrared analysis described the successfully incorporation of each plant extract in the poly(vinyl alcohol) matrix, while the profilometry demonstrated the enhanced surface properties. The results showed that the plant extracts conferred significant antibacterial effects to films toward Staphylococcus aureus and Escherichia coli and are not toxic against fibroblastic cells from the rabbit.
    Type of Medium: Online Resource
    ISSN: 1996-1944
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2487261-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Nanomaterials, MDPI AG, Vol. 11, No. 12 ( 2021-12-08), p. 3336-
    Abstract: In this paper, hydroalcoholic solutions of Thymus vulgaris, Salvia officinalis folium, and Hyperici herba were used in combination with poly (vinyl alcohol) with the aim of developing novel poly (vinyl alcohol)-based nanofiber mats loaded with phytotherapeutic agents via the electrospinning technique. The chemical structure and morphology of the polymeric nanofibers were investigated using Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM). The addition of Thymus vulgaris, Salvia officinalis folium, and Hyperici herba extracts to the pure polyvinyl alcohol fibers led to changes in the morphology of the fibers and a reduction in the fibers’ diameter, from 0.1798 µm in the case of pure polyvinyl alcohol to 0.1672, 0.1425, and 0.1369 µm in the case of polyvinyl alcohol loaded with Thymus vulgaris, Salvia officinalis folium, and Hyperici herba, respectively. The adapted Folin–Ciocalteu (FC) method, which was used to determine the total phenolic contents, revealed that the samples of PVA–Hyperici herba and PVA–Thymus vulgaris had the highest phenol contents, at 13.25 μgGAE/mL and 12.66 μgGAE/mL, respectively. Dynamic water vapor measurements were used in order to investigate the moisture sorption and desorption behavior of the developed electrospun materials. The antimicrobial behavior of these products was also evaluated. Disk diffusion assay studies with Escherichia coli, Staphylococcus aureus, and Methicillin-resistant Staphylococcus aureus were conducted on the developed nanofibers in order to quantify their phytotherapeutic potential.
    Type of Medium: Online Resource
    ISSN: 2079-4991
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2662255-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...