GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-08-28
    Description: Based on more than 3 years of moored current-meter records, this study examined seasonal variability of near-inertial kinetic energy (NIKE) as well as all large (greater than one standard deviation from the mean) NIKE events related to storms and eddies in the northwestern South China Sea. The NIKE in the subsurface layer (30-450 m) exhibited obvious seasonal variability with larger values in autumn (herein defined as August, September and October). All large NIKE events during the observation period were generated by passing storms. Most of the NIKE events had an e -folding timescale longer than 7d. The phase velocity, vertical wavelength, and frequency shift of these events were examined. The maximum NIKE, induced by typhoon “Neoguri", was observed in April 2008. Normal mode analysis suggested that the combined effects of the first 4 modes determined the vertical distribution of NIKE with higher NIKE below 70 m but lower NIKE from 30 to 70 m. Another near-inertial oscillation event observed in August 2007 had the longest e -folding timescale of 13.5 d. Moreover, the NIKE propagated both upward and downward during this event. A ray-tracing model indicated that the smaller Brunt–Väisälä frequency and the stronger vertical shear of horizontal currents in an anticyclonic eddy and the near inertial wave with larger horizontal scale facilitated the unusual propagation of the NIKE and the long decay timescale. Although the NIKE originated from wind, the water column structure affected by diverse oceanographic processes contributed substantially to its complex propagation and distribution.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-02-01
    Description: [1]  Based on the in situ data and ADCP observation in fall, it is found that a northeastward current at inter-middle level flows on the Northern South China Sea (NSCS) continental shelf. This current flows almost along the isobaths, and it deflects from the isobaths veering toward deep water when flowing over the Dongsha Islands. Geographic currents derived from the climatologic hydrography data (WOA01) and absolute dynamic topography (ADT) data confirm the deflection of the northeastward current on NSCS continent. A fine resolution regional ocean model which can well reproduce the large scale circulation in the NSCS is used to analyze the dynamic about the deflection. The vorticity term balances shows that JEBAR (Joint Effect of Baroclinicity and Relief) drives the water column to depart from the isobaths. To the east of the Dongsha Islands, the isopycnal is almost orthogonal to the isobaths. The joint effect of the topographic and the baroclinic effect supplies negative vorticity and drives the water column to deflect from the isobaths and veer to deeper water. Momentum analysis along the stream line shows that, when the sea water flows around the Dongsha islands, the pressure gradient along the isobath pushes the sea water to accelerate, and then the Coriolis force orthogonal to the isobath increases and overcomes the corresponding pressure gradient, which drives the water deflected from the isobath toward the deep sea.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...