GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (12)
  • American Journal of Physiology: Heart and Circulatory Physiology  (7)
  • American Journal of Physiology: Renal Physiology  (5)
  • 2574
  • 2577
  • 1
    Publication Date: 2017-07-02
    Description: In mice, myocardial hypertrophic preconditioning (HP), which is produced by the removal of short-term transverse aortic constriction (TAC), was recently reported to render the heart resistant to hypertrophic responses induced by subsequent reconstriction (Re-TAC). However, there is no efficient noninvasive method for ensuring that the repeated aortic manipulations were successfully performed. We previously demonstrated that ultrasound biomicroscopy (UBM) is a noninvasive and effective approach for predicting TAC success. Here, we investigated the value of UBM for serial predictions of load conditions in establishing a murine HP model. C57BL/6J mice were subjected to a sham operation, TAC, or Re-TAC, and the peak flow velocity at the aortic banding site (PVb) was measured by UBM. Left ventricular end-systolic pressure (LVESP) was examined by micromanometric catheterization. The PVb was positively associated with LVESP ( R 2 = 0.8204, P 〈 0.001, for TAC at 3 days and R 2 = 0.7746, P 〈 0.001, for Re-TAC at 4 wk). PVb and LVESP values were markedly elevated after aortic banding, became attenuated to the sham-operated level after debanding, and increased after aortic rebanding. The cardiac hypertrophic responses were examined by UBM, histology, RT-PCR, and Western blot analysis. Four weeks after the last operation, with PVb ≥ 3.5 m/s as an indicator of successful aortic constriction, Re-TAC mice showed less cardiac hypertrophy, fetal gene expression, and ERK1/2 activation than TAC mice. Therefore, we successfully established a UBM protocol for the serial assessment of aortic flow and the prediction of LVESP during repeated aortic manipulations in mice, which might be useful for noninvasive evaluations of the murine HP model. NEW & NOTEWORTHY We successfully developed an ultrasound biomicroscopy protocol for the serial assessment of aortic bandings and the relevant left ventricular pressure in a murine model of cardiac hypertrophic preconditioning. The protocol may be of great importance in the successful establishment of the hypertrophic preconditioning model for further mechanistic and pharmacological studies.
    Print ISSN: 0363-6135
    Electronic ISSN: 1522-1539
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-06-05
    Description: Collagen IV (Col IV) is a major component of expanded glomerular extracellular matrix in diabetic nephropathy and Smad1 is a key molecule regulating Col IV expression in mesangial cells (MCs). The present study was conducted to determine if Smad1 pathway and Col IV protein abundance were regulated by store-operated Ca 2+ entry (SOCE). In cultured human MCs, pharmacological inhibition of SOCE significantly increased the total amount of Smad1 protein. Activation of SOCE blunted high-glucose-increased Smad1 protein content. Treatment of human MCs with ANG II at 1 µM for 15 min, high glucose for 3 days, or TGF-β1 at 5 ng/ml for 30 min increased the level of phosphorylated Smad1. However, the phosphorylation of Smad1 by those stimuli was significantly attenuated by activation of SOCE. Knocking down Smad1 reduced, but expressing Smad1 increased, the amount of Col IV protein. Furthermore, activation of SOCE significantly attenuated high-glucose-induced Col IV protein production, and blockade of SOCE substantially increased the abundance of Col IV. To further verify those in vitro findings, we downregulated SOCE specifically in MCs in mice using small-interfering RNA (siRNA) against Orai1 (the channel protein mediating SOCE) delivered by the targeted nanoparticle delivery system. Immunohistochemical examinations showed that expression of both Smad1 and Col IV proteins was significantly greater in the glomeruli with positively transfected Orai1 siRNA compared with the glomeruli from the mice without Orai1 siRNA treatment. Taken together, our results indicate that SOCE negatively regulates the Smad1 signaling pathway and inhibits Col IV protein production in MCs.
    Print ISSN: 1931-857X
    Electronic ISSN: 1522-1466
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-02-02
    Description: During childbirth, a combinatorial injury occurs and can result in stress urinary incontinence (SUI). Simulated childbirth injury, consisting of vaginal distension (VD) and pudendal nerve crush (PNC), results in slowed recovery of continence, as well as decreased expression of brain-derived neurotrophic factor (BDNF), a regenerative cytokine. Electrical stimulation has been shown to upregulate BDNF in motor neurons and facilitate axon regrowth through the increase of β II -tubulin expression after injury. In this study, female rats underwent selective pudendal nerve motor branch (PNMB) stimulation after simulated childbirth injury or sham injury to determine whether such stimulation affects bladder and anal function after injury and whether the stimulation increases BDNF expression in Onuf's nucleus after injury. Rats received 4 h of VD followed by bilateral PNC and 1 h of subthreshold electrical stimulation of the left PNMB and sham stimulation of the right PNMB. Rats underwent filling cystometry and anal pressure recording before, during, and after the stimulation. Bladder and anal contractile function were partially disrupted after injury. PNMB stimulation temporarily inhibited bladder contraction after injury. Two days and 1 wk after injury, BDNF expression in Onuf's nucleus of the stimulated side was significantly increased compared with the sham-stimulated side, whereas β II -tubulin expression in Onuf's nucleus of the stimulated side was significantly increased only 1 wk after injury. Acute electrical stimulation of the pudendal nerve proximal to the crush site upregulates BDNF and β II -tubulin in Onuf's nucleus after simulated childbirth injury, which could be a potential preventive option for SUI after childbirth injury.
    Print ISSN: 1931-857X
    Electronic ISSN: 1522-1466
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-03-03
    Description: Coronary collateral growth (CCG) is impaired in metabolic syndrome (MetS). microRNA-145 (miR-145-Adv) delivery to our rat model of MetS (JCR) completely restored and neutrophil depletion significantly improved CCG. We determined whether low endogenous levels of miR-145 in MetS allowed for elevated production of 20-hydroxyeicosatetraenoic acid (20-HETE), which, in turn, resulted in excessive neutrophil accumulation and endothelial dysfunction leading to impaired CCG. Rats underwent 0–9 days of repetitive ischemia (RI). RI-induced cardiac CYP4F (neutrophil-specific 20-HETE synthase) expression and 20-HETE levels were increased (4-fold) in JCR vs. normal rats. miR-145-Adv and 20-HETE antagonists abolished and neutrophil depletion (blocking antibodies) reduced (~60%) RI-induced increases in CYP4F expression and 20-HETE production in JCR rats. Impaired CCG in JCR rats (collateral-dependent blood flow using microspheres) was completely restored by 20-HETE antagonists [collateral-dependent zone (CZ)/normal zone (NZ) flow ratio was 0.76 ± 0.07 in JCR + 20-SOLA, 0.84 ± 0.05 in JCR + 20-HEDGE vs. 0.11 ± 0.02 in JCR vs. 0.84 ± 0.03 in normal rats]. In JCR rats, elevated 20-HETE was associated with excessive expression of endothelial adhesion molecules and neutrophil infiltration, which were reversed by miR-145-Adv. Endothelium-dependent vasodilation of coronary arteries, endothelial nitric oxide synthase (eNOS) Ser1179 phosphorylation, eNOS-dependent NO ·– production and endothelial cell survival were compromised in JCR rats. These parameters of endothelial dysfunction were completely reversed by 20-HETE antagonism or miR-145-Adv delivery, whereas neutrophil depletion resulted in partial reversal (~70%). We conclude that low miR-145 in MetS allows for increased 20-HETE, mainly from neutrophils, which compromises endothelial cell survival and function leading to impaired CCG. 20-HETE antagonists could provide viable therapy for restoration of CCG in MetS. NEW & NOTEWORTHY Elevated 20-hydroxyeicosatetraenoic acid (20-HETE) impairs coronary collateral growth (CCG) in metabolic syndrome by eliciting endothelial dysfunction and apoptosis via excessive neutrophil infiltration. 20-HETE antagonists completely restore coronary collateral growth in metabolic syndrome. microRNA-145 (miR-145) is an upstream regulator of 20-HETE production in metabolic syndrome; low expression of miR-145 in metabolic syndrome promotes elevated production of 20-HETE.
    Print ISSN: 0363-6135
    Electronic ISSN: 1522-1539
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-09-12
    Description: Our previous study demonstrated that the abundance of extracellular matrix proteins was suppressed by store-operated Ca 2+ entry (SOCE) in mesangial cells (MCs). The present study was conducted to investigate the underlying mechanism focused on the transforming growth factor-β1 (TGF-β1)/Smad3 pathway, a critical pathway for ECM expansion in diabetic kidneys. We hypothesized that SOCE suppressed ECM protein expression by inhibiting this pathway in MCs. In cultured human MCs, we observed that TGF-β1 (5 ng/ml for 15 h) significantly increased Smad3 phosphorylation, as evaluated by immunoblot. However, this response was markedly inhibited by thapsigargin (1 µM), a classical activator of store-operated Ca 2+ channels. Consistently, both immunocytochemistry and immunoblot showed that TGF-β1 significantly increased nuclear translocation of Smad3, which was prevented by pretreatment with thapsigargin. Importantly, the thapsigargin effect was reversed by lanthanum (La 3+ ; 5 µM) and GSK-7975A (10 µM), both of which are selective blockers of store-operated Ca 2+ channels. Furthermore, knockdown of Orai1, the pore-forming subunit of the store-operated Ca 2+ channels, significantly augmented TGF-β1-induced Smad3 phosphorylation. Overexpression of Orai1 augmented the inhibitory effect of thapsigargin on TGF-β1-induced phosphorylation of Smad3. In agreement with the data from cultured MCs, in vivo knockdown of Orai1 specific to MCs using a targeted nanoparticle small interfering RNA delivery system resulted in a marked increase in abundance of phosphorylated Smad3 and in nuclear translocation of Smad3 in the glomerulus of mice. Taken together, our results indicate that SOCE in MCs negatively regulates the TGF-β1/Smad3 signaling pathway.
    Print ISSN: 1931-857X
    Electronic ISSN: 1522-1466
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-08-04
    Description: We have recently demonstrated that disruption of the murine cytochrome P -450 2c44 gene ( Cyp2c44) exacerbates chronic hypoxia-induced pulmonary artery remodeling and hypertension in mice. Subsequently, we serendipitously found that Cyp2c44 gene disruption also increases hematopoietic stem cell (HSC) numbers in bone marrow and blood. Therefore, the objective of the present study was to investigate whether CYP2C44-derived eicosanoids regulate HSC proliferation/cell growth and whether increased HSCs contribute to chronic hypoxia-induced remodeling of pulmonary arteries in Cyp2c44 knockout mice. Our findings demonstrated that lack of CYP2C44 epoxygenase, which catalyzed the oxidation of arachidonic acid to epoxyeicosatrienoic (EETs) and hydroxyeicosatetraenoic (HETE) acids, increases the numbers of 1 ) HSCs (CD34 + , CD117 + , and CD133 + ), 2 ) proangiogenic (CD34 + CD133 + and CD34 + CD117 + CD133 + ) cells, and 3 ) immunogenic/inflammatory (CD34 + CD11b + , CD133 + CD11b + , F4/80 + , CD11b + , and F4/80 + CD11b + ) macrophages in bone marrow and blood compared with wild-type mice. Among the various CYP2C44-derived arachidonic acids, only 15-HETE decreased CD117 + cell numbers when applied to bone marrow cell cultures. Interestingly, CD133 + and von Willebrand factor-positive cells, which are derived from proangiogenic stem cells, are increased in the bone marrow, blood, and lungs of mice exposed to chronic hypoxia and in remodeled and occluded pulmonary arteries of CYP2C44-deficient mice. In conclusion, our results demonstrate that CYP2C44-derived 15-HETE plays a critical role in downregulating HSC proliferation and growth, because disruption of the Cyp2c44 gene increased HSCs that potentially contribute to chronic hypoxia-induced pulmonary arterial remodeling and occlusion. NEW & NOTEWORTHY This study demonstrates that cytochrome P -450 2C44 plays a critical role in controlling the phenotype of hematopoietic stem cells and that when this enzyme is knocked out, stem cells are differentiated. These stem cells give rise to increased circulating monocytes and macrophages and contribute to the pathogenesis of chronic hypoxia-induced pulmonary artery remodeling and hypertension.
    Print ISSN: 0363-6135
    Electronic ISSN: 1522-1539
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-08-12
    Description: We have previously reported that epoxyeicosatrienoic acid (EET) has multiple beneficial effects on vascular function; in addition to its antiapoptotic action, it increases insulin sensitivity and inhibits inflammation. To uncover the signaling mechanisms by which EET reduces cardiomyopathy, we hypothesized that EET infusion might ameliorate obesity-induced cardiomyopathy by improving heme oxygenase (HO)-1, Wnt1, thermogenic gene levels, and mitochondrial integrity in cardiac tissues and improved pericardial fat phenotype. EET reduced levels of fasting blood glucose and proinflammatory adipokines, including nephroblastoma overexpressed (NOV) signaling, while increasing echocardiographic fractional shortening and O 2 consumption. Of interest, we also noted a marked improvement in mitochondrial integrity, thermogenic genes, and Wnt 1 and HO-1 signaling mechanisms. Knockout of peroxisome proliferator-activated receptor- coactivator-1α (PGC-1α) in EET-treated mice resulted in a reversal of these beneficial effects including a decrease in myocardial Wnt1 and HO-1 expression and an increase in NOV. To further elucidate the effects of EET on pericardial adipose tissues, we observed EET treatment increases in adiponectin, PGC-1α, phospho-AMP-activated protein kinase, insulin receptor phosphorylation, and thermogenic genes, resulting in a "browning" pericardial adipose phenotype under high-fat diets. Collectively, these experiments demonstrate that an EET agonist increased Wnt1 and HO-1 signaling while decreasing NOV pathways and the progression of cardiomyopathy. Furthermore, this report presents a portal into potential therapeutic approaches for the treatment of heart failure and metabolic syndrome. NEW & NOTEWORTHY The mechanism by which EET acts on obesity-induced cardiomyopathy is unknown. Here, we describe a previously unrecognized function of EET infusion that inhibits nephroblastoma overexpressed (NOV) levels and activates Wnt1, hence identifying NOV inhibition and enhanced Wnt1 expression as novel pharmacological targets for the prevention and treatment of cardiomyopathy and heart failure. Listen to this article's corresponding podcast at http://ajpheart.physiology.org/content/early/2017/05/31/ajpheart.00093.2017 .
    Print ISSN: 0363-6135
    Electronic ISSN: 1522-1539
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-07-03
    Description: MAD2B, an anaphase-promoting complex/cyclosome (APC/C) inhibitor and a small subunit of DNA polymerase , is indispensible for mitotic checkpoint control and DNA repair. Previously, we established that MAD2B is expressed in glomerular and tubulointerstitial compartments and participates in high glucose-induced podocyte injury. However, its role in other renal diseases remains elusive. In the present study, we aim to illustrate the potential role of MAD2B in the pathogenesis of renal fibrosis. By immunofluorescence and Western blotting, we found MAD2B expression is obviously increased in tubulointerstitial fibrosis (TIF) patients and unilateral ureteral obstruction (UUO) mice. It is widely accepted that resident fibroblasts are the major source of collagen-producing myofibroblasts during TIF. Therefore, we evaluated the level of MAD2B in fibroblasts (NRK-49F) exposed to transforming growth factor (TGF)-β1 by immunoblotting and revealed that MAD2B is upregulated in a time-dependent manner. Intriguingly, SnoN, a transcriptional repressor of the TGF-β1/Smad signaling pathway, is decreased in TGF-β1-treated fibroblasts as well as the kidney cortex from TIF patients and UUO mice. Either in vitro or in vivo, local genetic depletion of MAD2B by lentiviral transfection could preserve SnoN abundance and suppress Smad3 phosphorylation, which finally dampens fibroblast activation, ECM accumulation, and alleviates the severity of TIF. However, the ubiquitin ligase APC/C is not involved in the MAD2B-mediated SnoN decline, although this process is ubiquitination dependent. In conclusion, our observation proposes that besides cell cycle management, MAD2B has a profibrotic role during fibroblast activation and TIF by suppressing SnoN expression. Targeting the MAD2B-SnoN pathway is a promising intervention for TIF.
    Print ISSN: 1931-857X
    Electronic ISSN: 1522-1466
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-10-08
    Description: The mechanisms by which prostanoids contribute to the maintenance of whole body water homeostasis are complex and not fully understood. The present study demonstrates that an EP3-dependent feedback mechanism contributes to the regulation of water homeostasis under high-salt conditions. Rats on a normal diet and tap water were placed in metabolic cages and given either sulprostone (20 μg·kg –1 ·day –1 ) or vehicle for 3 days to activate EP3 receptors in the thick ascending limb (TAL). Treatment was continued for another 3 days in rats given either 1% NaCl in the drinking water or tap water. Sulprostone decreased expression of cyclooxygenase 2 (COX-2) expression by ~75% in TAL tubules from rats given 1% NaCl concomitant with a ~60% inhibition of COX-2-dependent PGE 2 levels in the kidney. Urine volume increased after ingestion of 1% NaCl but was reduced ~40% by sulprostone. In contrast, the highly selective EP3 receptor antagonist L-798106 (100 μg·kg –1 ·day –1 ), which increased COX-2 expression and renal PGE 2 production, increased urine volume in rats given 1% NaCl. Sulprostone increased expression of aquaporin-2 (AQP2) in the inner medullary collecting duct plasma membrane in association with an increase in phosphorylation at Ser269 and decrease in Ser261 phosphorylation; antagonism of EP3 with L-798106 reduced AQP2 expression. Thus, although acute activation of EP3 by PGE 2 in the TAL and collecting duct inhibits the Na-K-2Cl cotransporter and AQP2 activity, respectively, chronic activation of EP3 in vivo limits the extent of COX-2-derived PGE 2 synthesis, thereby mitigating the inhibitory effects of PGE 2 on these transporters and decreasing urine volume.
    Print ISSN: 1931-857X
    Electronic ISSN: 1522-1466
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-12-02
    Description: Dietary carotenoids like β-carotene are converted within the body either to retinoid, via β-carotene-15,15'-dioxygenase (BCO1), or to β-apo-carotenoids, via β-carotene-9',10'-oxygenase 2. Some β-apo-carotenoids are potent antagonists of retinoic acid receptor (RAR)-mediated transcriptional regulation, which is required to ensure normal heart development and functions. We established liquid chromatography tandem mass spectrometery methods for measuring concentrations of 10 β-apo-carotenoids in mouse plasma, liver, and heart and assessed how these are influenced by Bco1 deficiency and β-carotene intake. Surprisingly, Bco1 –/– mice had an increase in heart levels of retinol, nonesterified fatty acids, and ceramides and a decrease in heart triglycerides. These lipid changes were accompanied by elevations in levels of genes important to retinoid metabolism, specifically retinol dehydrogenase 10 and retinol-binding protein 4, as well as genes involved in lipid metabolism, including peroxisome proliferator-activated receptor-, lipoprotein lipase, Cd36, stearoyl-CoA desaturase 1, and fatty acid synthase. We also obtained evidence of compromised heart function, as assessed by two-dimensional echocardiography, in Bco1 –/– mice. However, the total absence of Bco1 did not substantially affect β-apo-carotenoid concentrations in the heart. β-Carotene administration to matched Bco1 –/– and wild-type mice elevated total β-apo-carotenal levels in the heart, liver, and plasma and total β-apo-carotenoic acid levels in the liver. Thus, BCO1 modulates heart metabolism and function, possibly by altering levels of cofactors required for the actions of nuclear hormone receptors.
    Print ISSN: 0363-6135
    Electronic ISSN: 1522-1539
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...