GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (1)
  • Oxford University Press  (1)
  • American Chemical Society
  • American Chemical Society (ACS)
  • American Physical Society (APS)
  • 2010-2014  (1)
  • Neuro-Oncology  (1)
  • 129552
Document type
  • Articles  (1)
Source
Publisher
  • Oxford University Press  (1)
  • American Chemical Society
  • American Chemical Society (ACS)
  • American Physical Society (APS)
Years
  • 2010-2014  (1)
Year
Topic
  • 1
    Publication Date: 2014-09-17
    Description: Background Peripheral neuropathy is the major dose-limiting side effect of cisplatin and oxaliplatin, and there are currently no effective treatments available. The aim of this study was to assess the pharmacological mechanisms underlying chemotherapy-induced neuropathy in novel animal models based on intraplantar administration of cisplatin and oxaliplatin and to systematically evaluate the analgesic efficacy of a range of therapeutics. Methods Neuropathy was induced by a single intraplantar injection of cisplatin or oxaliplatin in C57BL/6J mice and assessed by quantification of mechanical and thermal allodynia. The pharmacological basis of cisplatin-induced neuropathy was characterized using a range of selective pharmacological inhibitors. The analgesic effects of phenytoin, amitriptyline, oxcarbazepine, mexiletine, topiramate, retigabine, gabapentin, fentanyl, and Ca 2+/ Mg 2+ were assessed 24 hours after induction of neuropathy. Results Intraplantar administration of cisplatin led to the development of mechanical allodynia, mediated through Na v 1.6-expressing sensory neurons. Unlike intraplantar injection of oxaliplatin, cold allodynia was not observed with cisplatin, consistent with clinical observations. Surprisingly, only fentanyl was effective at alleviating cisplatin-induced mechanical allodynia despite a lack of efficacy in oxaliplatin-induced cold allodynia. Conversely, lamotrigine, phenytoin, retigabine, and gabapentin were effective at reversing oxaliplatin-induced cold allodynia but had no effect on cisplatin-induced mechanical allodynia. Oxcarbazepine, amitriptyline, mexiletine, and topiramate lacked efficacy in both models of acute chemotherapy-induced neuropathy. Conclusion This study established a novel animal model of cisplatin-induced mechanical allodynia consistent with the A-fiber neuropathy seen clinically. Systematic assessment of a range of therapeutics identified several candidates that warrant further clinical investigation.
    Print ISSN: 1522-8517
    Electronic ISSN: 1523-5866
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...