GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-08-27
    Description: The cloud water content (CWC) in rainy clouds is a crucial parameter to determine the onset and the growth rate of precipitation, and to quantify the associated latent heating rate. No direct retrieval of CWC in rainy cloud from satellite observations is reported due to the difficulties of separating cloud particles from precipitation sized particles. However, based on multiple cloud simulations from the Weather and Research Forecasting (WRF) model, we have found that the CWC profile in warm rains can be well determined by three macro-physical cloud properties of cloud water path (CWP), cloud top height (CTH), and cloud bottom height (CBH). The CBH can be estimated using CWP, CTH and near surface rain rate. We proposed an algorithm with a lookup table for estimating the CWC profile using CWP, CTH and near surface rain rate as inputs. The performance of this algorithm was tested with WRF model simulations and a real drizzle case observed by the CloudSat satellite. Testing verified that the algorithm can retrieve the vertical distribution of CWC correctly with few errors at different spatiotemporal scales. In addition, the algorithm is not confined to particular microphysics schemes and is valid for multiple cloud systems in different areas over the world. This algorithm is expected to improve current knowledge of cloud water content in rainy clouds.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-08-31
    Description: [1]  One of the primary goals for the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National Polar-orbiting Partnership (SNPP) is to provide the science and user communities with the data continuity of the Environmental Data Records (EDR) (or Level-2 products) over global oceanic waters for various research and applications, including assessment of climatic and environmental variations. The ocean color EDR is one of the most important products derived from VIIRS. Since ocean color EDR is processed from the upstream Sensor Data Records (SDR) (or Level-1B data), the objective of this study is to evaluate the impact of the SDR on the VIIRS ocean color EDR. The quality of the SDR relies on pre-launch sensor characterizations as well as on-orbit radiometric calibrations, which are used to develop the sensor F-factor lookup tables (F-LUTs). VIIRS F-LUTs derived from solar and lunar calibrations have been used in processing data from the VIIRS Raw Data Records (RDR) (or Level-0 data) to SDR. In this study, three sets of F-LUTs with different generation schemes have been used to reprocess the SDR and then the ocean color EDR for product evaluations. VIIRS ocean color products are compared with in situ data from the Marine Optical Buoy (MOBY) and products from the Moderate Resolution Imaging Spectroradiometer (MODIS) on the satellite Aqua. It is found that the data quality of VIIRS operational ocean color products before 6 February 2012 is poor due to the inappropriate use of the at-launch F-LUTs for the SDR calibration, and that the recently updated VIIRS F-LUTs have significantly improved the SDR and ocean color EDR. Using reprocessed SDR with updated F-LUTs and including vicarious calibration, VIIRS ocean color EDR products are consistent with those from MODIS-Aqua in global deep waters. Although there are still some significant issues with VIIRS ocean color EDR, e.g., poor data quality over coastal regions, our results demonstrate that VIIRS has great potential to provide the science and user communities with consistently high quality global ocean color data records that are established from heritage ocean color sensors such as MODIS-Aqua.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-11-08
    Description: Water, Vol. 9, Pages 865: Cyanobacterial Nitrogen Fixation Influences the Nitrogen Removal Efficiency in a Constructed Wetland Water doi: 10.3390/w9110865 Authors: Xiaodong Zhang Xin Jia Liang Yan Jinzhi Wang Xiaoming Kang Lijuan Cui Nitrogen removal efficiency in constructed wetlands (CW) is influenced by multiple environmental factors. However, little is known about the role of cyanobacterial nitrogen fixation in affecting nitrogen removal efficiency. This study investigated how cyanobacterial nitrogen fixation affects the efficiency, at which a CW removes nitrogen from an associated artificial lake (AL) in Beijing. For this purpose, we measured cell densities of N-fixing and non-N-fixing cyanobacteria, the aquatic nitrogen fixation rate (RNfix), and the concentration of various nitrogen fractions over the growing season (April–November) of 2014 in both AL and CW. We found that the removal of particulate organic nitrogen (PON) contributed to >90% of the total nitrogen removal in the CW. The removal efficiency of PON was lower during August–October (55.45 ± 27.49%) than during April–July (68.86 ± 8.83%). Phytoplankton proliferation in summer, as one of the main sources of PON, may have exceeded the capacity of the CW and led to declines in PON removal efficiency. RNfix peaked in July–October (3–169 ng N·L−1·h−1) and was positively correlated with both PON concentration and the cell density of N-fixing Anabaena sp. over the growing season, suggesting that aquatic nitrogen fixation (primarily in the AL) may increase PON and thereby reduce the its removal efficiency in the CW.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...