GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-01-21
    Description: As the natural resources are getting exhausted, the concept of sustainable development of regions has received increasing attention, especially for resource-dependent cities. In this paper, an innovative method based on emergy analysis and the Human Impact Population Affluence Technology (IPAT) model is developed to analyze the quantitative relationship of economic growth, energy consumption and its overall sustainability level. Taiyuan, a traditional, resource-dependent city in China, is selected as the case study region. The main results show that the total emergy of Taiyuan increased from 9.023 × 1023 sej in 2007 to 9.116 × 1023 sej in 2014, with a 38% decline in non-renewable emergy and an increase of imported emergy up to 125%. The regional emergy money ratio (EMB) was reduced by 48% from 5.31 × 1013 sej/$ in 2007 to 2.74 × 1013 sej/$ in 2014, indicating that the increasing speed of consuming resources and energy was faster than the increase of GDP, and that Taiyuan’s money purchasing power declined. The lower emergy sustainability index (ESI) indicates that Taiyuan was explored and produced large quantities of mineral resources, which puts more stress on the environment as a consequence, and that this is not sustainable in the long run. The IPAT analysis demonstrates that Taiyuan sticks to the efforts of energy conservation and environmental protection. In order to promote regional sustainable development, it is necessary to have an integrated effort. Policy insights suggest that resourceful regions should improve energy and resource efficiency, optimize energy and resourceful structure and carry out extensive public participation.
    Electronic ISSN: 2071-1050
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-03-05
    Description: Ice nuclei are very important factors as they significantly affect the development and evolvement of convective clouds such as hail clouds. In this study, numerical simulations of hail processes in the Zhejiang Province were conducted using a mesoscale numerical model (WRF v3.4). The effects of six ice nuclei parameterization schemes on the macroscopic and microscopic structures of hail clouds were compared. The effect of the ice nuclei concentration on ground hailfall is stronger than that on ground rainfall. There were significant spatiotemporal, intensity, and distribution differences in hailfall. Changes in the ice nuclei concentration caused different changes in hydrometeors and directly affected the ice crystals, and, hence, the spatiotemporal distribution of other hydrometeors and the thermodynamic structure of clouds. An increased ice nuclei concentration raises the initial concentration of ice crystals with higher mixing ratio. In the developing and early maturation stages of hail cloud, a larger number of ice crystals competed for water vapor with increasing ice nuclei concentration. This effect prevents ice crystals from maturing into snow particles and inhibits the formation and growth of hail embryos. During later maturation stages, updraft in the cloud intensified and more supercooled water was transported above the 0°C level, benefitting the production and growth of hail particles. An increased ice nuclei concentration therefore favors the formation of hail.
    Print ISSN: 1687-9309
    Electronic ISSN: 1687-9317
    Topics: Geosciences , Physics
    Published by Hindawi
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...