GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-05-15
    Description: Energies, Vol. 11, Pages 1242: Optimal Scheduling Strategies of Distributed Energy Storage Aggregator in Energy and Reserve Markets Considering Wind Power Uncertainties Energies doi: 10.3390/en11051242 Authors: Zengqiang Mi Yulong Jia Junjie Wang Xiaoming Zheng With continuous technological improvement and economic development of energy storage, distributed energy storage (DES) will be widely connected to the distribution network. If fragmented DES systems are aggregated to form a distributed energy storage aggregator (DESA), the DESA will have great potential to participate in the day-ahead energy and reserve market and the balancing market. The DESA could act as a mediator between the market and DES consumers, enabling beneficial coordination for DES owners and power systems. This paper presents a bilevel optimization model for DESAs in the energy and reserve market under wind power uncertainties. In the lower-level problem, generating companies, wind power plants (WPP), and DESAs are optimized for scheduling day-ahead (DA) energy and the reserve market. In the upper-level problem, operational strategies for DES systems and DESAs are designed to deal with wind power uncertainties in the balancing market. The DESA splits its resources between the energy and reserve markets so that it can reduce total power system consumption, and mutual profit for the system and end customers is achieved. This model is formulated as a mixed-integer linear programming (MILP) program, which can be solved with commercial software. The validity of the bilevel optimization model is verified by the eight-node test transmission system and IEEE-33 bus distribution system.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-02-16
    Description: Energies, Vol. 11, Pages 438: Power-Balancing Based Induction Machine Model for Power System Dynamic Analysis in Electromechanical Timescale Energies doi: 10.3390/en11020438 Authors: Ding Wang Xiaoming Yuan Meiqing Zhang Power balance, including active and reactive power, between the system supply and the demand from induction motor loads is a potentially necessary condition for system stable operation. Motion of system states depends on the balancing of active and reactive powers. Therefore, this paper proposes an induction machine model in electromechanical timescale from a power balancing viewpoint, in which the induction motor load is modeled as a voltage vector driven by power balancing between the system supply and the demand from induction motor load, so as to describe the dynamic characteristics of induction motor loads in a physical way for power system dynamic analysis. Then a voltage magnitude-phase dynamic analysis with the proposed induction machine model is constructed. Based on the voltage magnitude-phase dynamic analysis, the characteristics of grid-connected induction motor loads are explored, and the instability mechanisms of grid-connected induction motor loads induced by a large disturbance are discussed. It is shown that the dynamic behavior of grid-connected induction motor loads can be described as the dynamic process of the terminal voltage vector driven by coupled active and reactive power balancing in different timescales. In this way, the dynamic behavior of induction motor loads in terms of voltage magnitude-phase dynamics and its physical characteristics are clearly illustrated. Time-domain simulation results are presented to validate the above analyses.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...