GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • English  (2)
  • 1
    Publication Date: 2023-07-21
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Due to the complexity of 2D magnetic anomaly maps north of 18°S and the sparsity of seismic data, the tectonic evolution of the northern Lau Basin has not yet been unraveled. We use a multi‐method approach to reconstruct the formation of the basin at ∼16°S by compiling seismic, magnetic, gravimetric and geochemical data along a 185 km‐long crustal transect. We identified a crustal zonation which preserves the level of subduction input at the time of the crust's formation. Paired with the seafloor magnetization, the crustal zonation enabled us to qualitatively approximate the dynamic spreading history of the region. Further assessment of the recent tectonic activity and the degree of tectonic overprinting visible in the crust both suggest a complex tectonic history including a dynamically moving spreading center and the reorganizing of the local magma supply. Comparing the compiled data sets has revealed substantial differences in the opening mechanisms of the two arms of the Overlapping Spreading Center (OSC) that is made up by the northernmost tip of the Fonualei Rift and Spreading Center in the east and the southernmost segment of the Mangatolu Triple Junction in the west. The observed transition from a predominantly tectonic opening mechanism at the eastern OSC arm to a magmatic opening mechanism at the western OSC arm coincides with an equally sharp transition from and strongly subduction influenced crust to a crust with virtually no subduction input. The degree of subduction input alters the geochemical composition, as well as the lithospheric stress response.〈/p〉
    Description: Plain Language Summary: The opening of back‐arc basins is often described as analogy to mid‐ocean ridge spreading, where the only difference is the force driving the extension. However, the northern Lau Basin is a prime example for the shortcomings of this analogy since its crust preserves an image of its complex tectonic history. The complexity results from the short‐lived nature of zones of active rifting and spreading in the northern Lau Basin, which is very different from the temporally and spatially steady nature of spreading centers at mid‐ocean ridges. The analysis of different methods (wide angle seismic data using ocean bottom seismometers, multi‐channel seismic, magnetic, gravity, and geochemical data) has led us to conclude that the Lau Basin's crust at 15°30–17°20′S was formed by a dynamically changing, both in regard of magma composition and position, extensional system that consists of the Fonualei Rift and Spreading Center and the Mangatolu Triple Junction. Nevertheless, the crustal zonation, formed by the varying subduction influence during its formation, is still preserved and affects the stress response of the crust and thus the present‐day tectonic behavior.〈/p〉
    Description: Key Points: Oceanic crust in the north‐eastern Lau Basin formed at the now reorganized FRSC‐MTJ system. The position and the opening mechanisms of back‐arc basin spreading center's change more dynamically than at mid‐ocean ridges. Different opening mechanisms at the southern Mangatolu Triple Junction and northern Fonualei Rift Spreading Center despite their proximity.
    Description: German Ministry of Science and Education
    Description: GEOMAR Helmholtz Centre for Ocean Research Kiel
    Description: Federal Institute for Geosciences and Natural Resources
    Description: https://doi.org/10.1594/PANGAEA.945716
    Description: https://doi.org/10.1594/PANGAEA.945716
    Keywords: ddc:551.1 ; Lau Basin ; back‐arc basins ; multi‐disciplinary approach ; crustal evolution ; traveltime tomography ; extension dynamics
    Language: English
    Type: doc-type:article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-08-09
    Description: Abundant volcanic activity occurs in the back‐arc region of the northern Tofua island arc where the Northeast Lau Spreading Center (NELSC) propagates southwards into older crust causing the formation of numerous seamounts at the propagating rift tip. An off‐axis volcanic diagonal ridge (DR) occurs at the eastern flank of the NELSC, linking the large rear‐arc volcano Niuatahi with the NELSC. New geochemical data from the NELSC, the southern propagator seamounts, and DR reveal that the NELSC lavas are tholeiitic basalts whereas the rear‐arc volcanoes typically erupt lavas with boninitic composition. The sharp geochemical boundary probably reflects the viscosity contrast between off‐axis hydrous harzburgitic mantle and dry fertile mantle beneath the NELSC. The new data do not indicate an inflow of Samoa plume mantle into the NELSC, confirming previously published He isotope data. The NELSC magmas form by mixing of an enriched and a depleted Indian Ocean‐type upper mantle end‐member implying a highly heterogeneous upper mantle composition in this area. Most NELSC lavas are little affected by a slab component implying that melting is adiabatic beneath the spreading center. The DR lavas show the influence of a component from the subducted Louisville Seamount Chain, which was previously thought to be restricted to the nearby arc volcanoes Niuatoputapu and Tafahi. This signature is rarely detected along the NELSC implying little mixing of melts from the low‐viscosity hydrous portion of the mantle wedge beneath the rear‐arc volcanoes into the melting region of the dry mantle beneath the NELSC.
    Description: Plain Language Summary: Volcanic activity is abundant at subduction zones and the chemical analysis of the erupted rocks allows to determine the material transport in the Earth's mantle. The Northeast Lau Spreading Center (NELSC) forms by extension and volcanism behind the northern Tofua island arc. Several large volcanic structures occur east of the NELSC and the lavas of these off‐axis volcanoes are chemically and isotopically distinct implying little mixing with the magmas of the NELSC. The differences suggest decompression melting of relatively dry mantle beneath the NELSC whereas the off‐axis volcanoes reflect melting of water‐rich mantle affected by fluids from the subducting Pacific Plate. The sharp geochemical boundary between the NELSC and off‐axis volcanoes is probably due to a large viscosity contrast between hydrous harzburgitic mantle and dry fertile mantle. Element and isotope ratios indicate that the NELSC magmas form by mixing of enriched and depleted portions of the upper mantle, and we do not find evidence for inflow of the Samoa deep mantle plume from the north. Some of the off‐axis lavas contain a component from a volcanic chain that was subducted some 4 million years ago and that was previously only known in two volcanoes of the Tofua island arc.
    Description: Key Points: Variably enriched mantle sources melt beneath the Northeast Lau Spreading Center (NELSC) but there is no evidence for Samoa mantle plume inflow. Relatively dry fertile mantle beneath NELSC causes sharp geochemical boundary with hydrous harzburgitic North Tonga mantle wedge. Subducted Louisville Seamount Chain material affects rear‐arc volcanism.
    Description: Bundesministerium für Bildung und Forschung (BMBF) http://dx.doi.org/10.13039/501100002347
    Description: Deutsche Forschungsgemeinschaft (DFG) http://dx.doi.org/10.13039/501100001659
    Keywords: ddc:551.21 ; ddc:551.116 ; ddc:551.9
    Language: English
    Type: doc-type:article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...