GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Artificial intelligence.  (2)
  • Bioinformatics.  (1)
  • 13C; AGE; Anthropogenic disturbances; Anthropogenic impact; C/N; CFL-3; charcoal; Cluster number; Cueifong Lake; Deforestation; DEPTH, sediment/rock; freshwater lake; Incoherent/coherent ratio; Iron, normalized; Lake sediment core; mountain lakes; RUSC; Russian corer; Silicon, normalized; Taiwan; TOC; X-ray fluorescence (XRF); XRF core scanner data; XRF-core scanning
  • 13C; Anthropogenic disturbances; Anthropogenic impact; C/N; charcoal; Deforestation; freshwater lake; Lake sediment core; mountain lakes; Taiwan; TOC; XRF core scanner data; XRF-core scanning
  • Antibody
  • Calcium, normalized; Chromium, normalized; Cut-off machine, STIHL, TS 420; Da'an River, Miaoli County, Taiwan; Daan-3; DISTANCE; ichnofossil; Iron, normalized; Manganese, normalized; palaeoenvironment; Pliocene; Potassium, normalized; Rosselia; Rubidium, normalized; sedimentary geochemistry; Silicon, normalized; Sulfur, normalized; Taiwan; Titanium, normalized; X-ray fluorescence ITRAX core scanner; Yttrium, normalized; Yutengping Sandstone; Zinc, normalized; Zirconium, normalized
  • Carrier
  • English  (3)
Document type
Keywords
  • Artificial intelligence.  (2)
  • Bioinformatics.  (1)
  • 13C; AGE; Anthropogenic disturbances; Anthropogenic impact; C/N; CFL-3; charcoal; Cluster number; Cueifong Lake; Deforestation; DEPTH, sediment/rock; freshwater lake; Incoherent/coherent ratio; Iron, normalized; Lake sediment core; mountain lakes; RUSC; Russian corer; Silicon, normalized; Taiwan; TOC; X-ray fluorescence (XRF); XRF core scanner data; XRF-core scanning
  • 13C; Anthropogenic disturbances; Anthropogenic impact; C/N; charcoal; Deforestation; freshwater lake; Lake sediment core; mountain lakes; Taiwan; TOC; XRF core scanner data; XRF-core scanning
  • Antibody
  • +
Language
  • English  (3)
Years
  • 1
    Online Resource
    Online Resource
    Dordrecht :Springer Netherlands,
    Keywords: Artificial intelligence. ; Logic. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (426 pages)
    Edition: 1st ed.
    ISBN: 9781402050459
    Series Statement: Applied Logic Series ; v.34
    DDC: 006.3
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Paris :Atlantis Press (Zeger Karssen),
    Keywords: Artificial intelligence. ; Machine learning. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (331 pages)
    Edition: 1st ed.
    ISBN: 9789491216626
    Series Statement: Atlantis Thinking Machines Series ; v.4
    Language: English
    Note: Intro -- Theoretical Foundations of Artificial General Intelligence -- Contents -- 1 Introduction: What Is the Matter Here? -- 1.1 The Matter of Artificial General Intelligence -- 1.2 The Matter of Theoretical Foundation -- 1.3 The Matter of Objective -- 1.4 The Matter of Approach -- 1.5 Challenges at the Heart of the Matter -- 1.6 Summary -- Bibliography -- 2 Artificial Intelligence and CognitiveModeling Have the Same Problem -- 2.1 The Intelligence Problem -- 2.1.1 Naming the problem -- 2.1.2 Why the Intelligence Problem is Important -- 2.1.3 The State of the Science -- 2.2 Existing Methods and Standards are not Sufficient -- 2.2.1 Formal linguistics -- 2.2.2 Neuroscience -- 2.2.3 Artificial intelligence -- 2.2.4 Experimental psychology -- 2.3 CognitiveModeling: The Model Fit Imperative -- 2.4 Artificial Intelligence and CognitiveModeling Can Help Each Other -- 2.5 Conclusions -- Bibliography -- 3 Psychometric Artificial General Intelligence: The Piaget-MacGuyver Room -- 3.1 Introduction -- 3.2 More on Psychometric AGI -- 3.2.1 Newell & -- the Neglected Route Toward General Machine Intelligence -- 3.2.2 So, What is Psychometric AGI? -- 3.2.3 Springboard to the Rest of the Present Paper -- 3.3 Descartes' Two Tests -- 3.4 Piaget's View of Thinking & -- The Magnet Test -- 3.5 The LISA model -- 3.6 Analogico-Deductive Reasoning in the Magnet Test -- 3.7 Next Steps -- Bibliography -- 4 Beyond the Octopus: From General Intelligence toward a Human-likeMind -- 4.1 Introduction -- 4.2 Octopus Intelligence -- 4.3 A "Ladder" of Intelligence -- 4.4 Linguistic Grounding -- 4.5 Implications of the Ladder for AGI -- 4.6 Conclusion -- Bibliography -- 5 One Decade of Universal Artificial Intelligence -- 5.1 Introduction -- 5.2 The AGI Problem -- 5.3 Universal Artificial Intelligence -- 5.4 Facets of Intelligence -- 5.5 Social Questions. , 5.6 State of the Art -- 5.7 Discussion -- Epilogue. -- Bibliography -- 6 Deep Reinforcement Learning as Foundation for Artificial General Intelligence -- 6.1 Introduction: Decomposing the AGI Problem -- 6.2 Deep Learning Architectures -- 6.2.1 Overcoming the Curse of Dimensionality -- 6.2.2 Spatiotemporal State Inference -- 6.3 Scaling Decision Making under Uncertainty -- 6.3.1 Deep Reinforcement Learning -- 6.3.2 Actor-Critic Reinforcement Learning Themes in Cognitive Science -- 6.4 Neuromorphic Devices Scaling AGI -- 6.5 Conclusions and Outlook -- Bibliography -- 7 The LIDA Model as a Foundational Architecture for AGI -- 7.1 Introduction -- 7.2 Why the LIDA model may be suitable for AGI -- 7.3 LIDA architecture -- 7.4 Cognitive architectures, features and the LIDA model -- 7.4.1 7.4.1 Ron Sun's Desiderata [53 -- 7.4.2 Newell's functional criteria (adapted from Lebiere and Anderson 2003) -- 7.4.3 BICA table -- 7.5 Discussion, Conclusions -- Bibliography -- 8 The Architecture of Human-Like General Intelligence -- 8.1 Introduction -- 8.2 Key Ingredients of the Integrative Human-Like Cognitive Architecture Diagram -- 8.3 An Architecture Diagram for Human-Like General Intelligence -- 8.4 Interpretation and Application of the Integrative Diagram -- 8.5 Cognitive Synergy -- 8.6 Why Is It So Hard to Measure Partial Progress Toward Human-Level AGI? -- 8.7 Conclusion -- Bibliography -- 9 A New Constructivist AI: From Manual Methods to Self-Constructive Systems -- 9.1 Introduction -- 9.2 The Nature of (General) Intelligence -- 9.3 Constructionist AI: A Critical Look -- 9.4 The Call for a New Methodology -- 9.5 Towards a New Constructivist AI -- 9.5.1 Temporal Grounding -- 9.5.2 Feedback Loops -- 9.5.3 Pan-Architectural Pattern Matching -- 9.5.4 Transparent Operational Semantics -- 9.5.5 Integration and Architecture Metaconstruction -- 9.6 Conclusions. , Acknowledgments -- Bibliography -- 10 Towards an Actual Gödel Machine Implementation: A Lesson in Self-Reflective Systems -- 10.1 Introduction -- 10.2 The Gödel Machine Concept -- 10.3 The Theoretical Foundations of Self-Reflective Systems -- 10.3.1 Basic λ -calculus -- 10.3.2 Constants, Conditionals, Side-effects, and Quoting -- 10.4 Nested Meta-Circular Evaluators -- 10.5 A Functional Self-Reflective System -- 10.6 Discussion -- Bibliography -- 11 Artificial General Intelligence Begins with Recognition: Evaluating the Flexibility of Recognition -- 11.1 Introduction -- 11.2 Evaluating Flexibility -- 11.2.1 The Testing Paradigm -- 11.2.2 Combinatorial Difficulties of Superposition or Mixes -- 11.2.3 "Occluding" Superpositions -- 11.2.4 Counting Tests -- 11.2.5 Binding Tests -- 11.2.6 Binding and The Set-Cover Problem -- 11.2.7 Noise Tests -- 11.2.8 Scoring the Tests -- 11.2.9 Evaluating Algorithms' Resources -- 11.3 Evaluation of Flexibility -- 11.3.1 Superposition Tests with Information Loss -- 11.3.2 Superpositions without loss -- 11.3.3 Counting Tests -- 11.3.4 Binding Scenarios -- 11.3.5 Noise Tests -- 11.3.6 Scoring Tests Together -- 11.3.7 Conclusion from Tests -- 11.4 Summary -- Acknowledgments -- Bibliography -- 12 Theory Blending as a Framework for Creativity in Systems for General Intelligence -- 12.1 Introduction -- 12.2 Productivity and CognitiveMechanisms -- 12.3 Cross-Domain Reasoning -- 12.4 Basic Foundations of Theory Blending -- 12.5 The Complex Plane: A Challenging Historical Example -- 12.6 Outlook for Next Generation General Intelligent Systems -- 12.7 Conclusions -- Bibliography -- 13 Modeling Motivation and the Emergence of Affect in a Cognitive Agent -- 13.1 Introduction -- 13.2 Emotion and affect -- 13.3 Affective states emerging from cognitive modulation -- 13.4 Higher-level emotions emerging from directing valenced affects. , 13.5 Generating relevance: the motivational system -- 13.6 Motive selection -- 13.7 Putting it all together -- Acknowledgments -- Bibliography -- 14 AGI and Machine Consciousness -- 14.1 Introduction -- 14.2 Consciousness -- 14.3 Machine Consciousness -- 14.4 Agent's Body -- 14.5 Interactions with the Environment -- 14.6 Time -- 14.7 FreeWill -- 14.8 Experience -- 14.9 Creativity -- 14.10 Conclusions -- Bibliography -- 15 Human and Machine Consciousness as a Boundary Effect in the Concept Analysis Mechanism -- 15.1 Introduction -- 15.1.1 The Hard Problem of Consciousness -- 15.1.2 A Problem within the Hard Problem -- 15.1.3 An Outline of the Solution -- 15.2 The Nature of Explanation -- 15.2.1 The Analysis Mechanism -- 15.2.2 The Molecular Framework -- 15.2.3 Explanation in General -- 15.2.4 Explaining Subjective Concepts -- 15.2.5 The "That Misses The Point" Objection -- 15.3 The Real Meaning of Meaning -- 15.3.1 Getting to the Bottom of Semantics -- 15.3.2 Extreme Cognitive Semantics -- 15.3.3 Implications -- 15.4 Some Falsifiable Predictions -- 15.4.1 Prediction 1: Blindsight -- 15.4.2 Prediction 2: New Qualia -- 15.4.3 Prediction 3: Synaesthetic Qualia -- 15.4.4 Prediction 4: Mind Melds -- 15.5 Conclusion -- Bibliography -- 16 Theories of Artificial Intelligence -Meta-theoretical considerations -- 16.1 The problem of AI theory -- 16.2 Nature and content of AI theories -- 16.3 Desired properties of a theory -- 16.4 Relations among the properties -- 16.5 Issues on the properties -- 16.6 Conclusion -- Acknowledgements -- Bibliography -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Singapore :Springer,
    Keywords: Bioinformatics. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (475 pages)
    Edition: 1st ed.
    ISBN: 9789811591440
    Language: English
    Note: Intro -- Preface -- Acknowledgments -- Contents -- Acronyms -- 1 Introduction and Preliminaries -- 1.1 Systems Biology -- 1.1.1 Overviews -- 1.1.2 Developments -- 1.1.3 Implications and Applications -- 1.2 Complex Networks -- 1.2.1 Overviews -- 1.2.2 Mathematical Description -- 1.2.3 Four Types of Networks -- 1.2.3.1 Regular Networks -- 1.2.3.2 Erdös-Rényi (ER) Random Networks -- 1.2.3.3 Scale-Free Networks -- 1.2.3.4 Small-World Networks -- 1.2.4 Statistical Metrics of Networks -- 1.2.4.1 Average Degree and Degree Distribution -- 1.2.4.2 Average Path Length -- 1.2.4.3 Diameter -- 1.2.4.4 Assortativity and Disassortativity -- 1.2.4.5 Small Worldness -- 1.2.4.6 Hierarchical Modularity -- 1.2.4.7 Modularity -- 1.2.4.8 Network Structure Entropy -- 1.2.5 Datasets for Real-World Complex Networks -- 1.3 Central Dogma of Molecular Biology -- 1.4 Bio-Molecular Networks -- 1.5 Several Statistical Methods -- 1.5.1 Descriptive Statistics -- 1.5.2 Cluster Analysis -- 1.5.2.1 Hierarchical Clustering -- 1.5.2.2 k-Means Clustering -- 1.5.3 Principal Component Analysis -- 1.6 Software for Network Visualization and Analysis -- 1.6.1 Pajek -- 1.6.2 Gephi -- 1.6.3 Cytoscape -- 1.6.4 MATLAB Packages and Others -- 1.7 Software for Statistical and Dynamical Analysis -- 1.7.1 SAS -- 1.7.2 SPSS -- 1.7.3 MATLAB -- 1.7.4 R -- 1.7.5 Some Other Software -- 1.7.5.1 Small Software for Clustering Analysis -- 1.7.5.2 Venn Diagrams -- 1.7.5.3 Software for Bifurcation and Dynamical Analysis -- 1.8 Organization of the Book -- References -- Part I Modeling and Dynamical Analysis of Bio-molecular Networks -- 2 Reconstruction of Bio-molecular Networks -- 2.1 Backgrounds -- 2.2 Reconstruction of Bio-molecular Networks Based on Online Databases -- 2.2.1 Regulatory Networks -- 2.2.2 Protein-Protein Interaction Networks -- 2.2.3 Signal Transduction Networks -- 2.2.4 Metabolic Networks. , 2.3 Artificial Algorithms for Generating Bio-molecular Networks -- 2.3.1 Algorithms for Artificial Regulatory Networks -- 2.3.2 Algorithms for Artificial PPI Networks -- 2.4 Statistical Reconstruction of Bio-molecular Networks -- 2.4.1 Association Methods -- 2.4.1.1 Various Similarity Measures -- 2.4.1.2 The Mean Variance Method -- 2.4.2 Information Theoretic Approaches -- 2.4.3 Partial Correlation/Gaussian Graphical Models -- 2.4.4 Granger Causality Methods -- 2.4.4.1 Granger Causality -- 2.4.4.2 Partial Granger Causality -- 2.4.4.3 Windowed Granger Causality -- 2.4.5 Statistical Regression Methods -- 2.4.6 Bayesian Methods -- 2.4.7 Variational Bayesian Methods -- 2.5 Topological Identification via Dynamical Networks -- 2.6 Discussions and Conclusions -- References -- 3 Modeling and Analysis of Simple Genetic Circuits -- 3.1 Backgrounds -- 3.2 Mathematical Modeling Techniques of Biological Networks -- 3.2.1 The Chemical Master Equation -- 3.2.2 Stochastic Simulation Algorithms -- 3.2.3 The Chemical Langevin Equation -- 3.2.4 Numerical Regimes for Stochastic Differential Equations -- 3.2.5 The Reaction Rate Equation -- 3.2.6 Numerical Regimes for Ordinary Differential Equations -- 3.3 Network Motifs and Motif Detection -- 3.4 The Feed-Forward Genetic Circuits -- 3.4.1 Related Works and Motivations -- 3.4.2 Methods for Parameter Sensitivities Analysis -- 3.4.2.1 Local Relative Parameter Sensitivities -- 3.4.2.2 A Traditional GPS Method: RS-HDMR -- 3.4.2.3 The New Global Relative Parameter Sensitivities Approach -- 3.4.3 Global Relative Parameter Sensitivities of the FFLs -- 3.4.3.1 Mathematical Models for the FFLs in GRNs -- 3.4.3.2 The GRPS of the FFLs -- 3.4.3.3 The Global Relative Parameter Sensitivities of CFFLs -- 3.4.3.4 The Global Relative Parameter Sensitivities of ICFFLs -- 3.4.3.5 The Effect of Input x on GRPS. , 3.4.3.6 The Effect of the Hill Coefficient n on the GRPS -- 3.4.3.7 RS-HDMR Versus GRPS on FFLs -- 3.4.4 GRPS and Biological Functions of the FFLs -- 3.4.4.1 GRPS and Biological Abundance of FFLs -- 3.4.4.2 Relations Between GRPS and Noise Characteristics -- 3.4.4.3 GRPS and Fold-Change Detection -- 3.4.5 Global Relative Input-Output Analysis of the FFLs -- 3.4.5.1 A GRIOS Index -- 3.4.5.2 GRIOS of the FFLs -- 3.4.5.3 GRIOS of the FFLs Versus Its Structural and Functional Characteristics -- 3.4.6 Summary -- 3.5 The Coupled Positive and Negative Feedback Genetic Circuits -- 3.5.1 Related Works and Motivations -- 3.5.2 Mathematical Models -- 3.5.2.1 Deterministic Models: Without Time Delay -- 3.5.2.2 Deterministic Models with Time Delays -- 3.5.2.3 Stochastic Model Directly from the Deterministic ODE: The Undeveloped Case -- 3.5.2.4 Stochastic Model from Table 3.9: The Developed Case -- 3.5.2.5 Stochastic Simulations -- 3.5.3 Dynamical Analysis and Functions -- 3.5.3.1 Bifurcation Analysis -- 3.5.3.2 Molecular Noise -- 3.5.3.3 Deterministic Versus Stochastic Dynamics for Parameters Near the Deterministic Bifurcation Points -- 3.5.3.4 Deterministic Versus Stochastic Dynamics for Parameters Locating in the Deterministic Excitable Region -- 3.5.3.5 Deterministic Versus Stochastic Dynamics for Parameters Locating in the Deterministic Bistable Region -- 3.5.3.6 Deterministic Versus Stochastic Dynamics for Parameters Locating in the Deterministic Oscillation Region -- 3.5.4 Summary -- 3.6 The Multi-Positive Feedback Circuits -- 3.6.1 Related Works and Motivations -- 3.6.2 Mathematical Models -- 3.6.3 Dynamical Analysis and Functions -- 3.6.3.1 The APFL Strength Can Tune the Size of the Bistable Region -- 3.6.3.2 The APFL Can Tune the Attractiveness of the Stable Steady States -- 3.6.3.3 The APFL Can Change the Global Relative I/O Sensitivities. , 3.6.3.4 Functional Characteristics of the APFL on Noisy Signal Processing -- 3.6.3.5 Effect of the APFL on Stochastic Bistable Switch -- 3.6.4 Summary -- 3.7 Exploring Simple Bio-molecular Networks with Specific Functions -- 3.7.1 Motivations -- 3.7.2 Exploring Enzymatic Regulatory Networks with Adaption -- 3.7.2.1 Searching for Circuits Capable of Adaptation -- 3.7.2.2 Identifying Minimal Adaptation Networks -- 3.7.2.3 Key Parameters in Minimal Adaptation Networks -- 3.7.2.4 Negative Feedback Loop with a Buffer Node -- 3.7.2.5 Incoherent FFL with a Proportioner Node -- 3.7.2.6 Exploration of All Possible 3-Node Networks: An NFBLB or IFFLP Architecture is Necessary for Adaptation -- 3.7.2.7 Motif Combinations Can Improve Adaptation -- 3.7.3 Exploring GRNs with Chaotic Behavior -- 3.7.3.1 GRNs and Mathematical Models -- 3.7.3.2 Conditions and Indicators for Chaos -- 3.7.3.3 Main Results -- 3.7.4 Summary -- 3.8 Discussions and Conclusions -- References -- 4 Modeling and Analysis of Coupled Bio-molecular Circuits -- 4.1 Backgrounds -- 4.2 Dynamical Analysis of a Composite Genetic Oscillator -- 4.2.1 Related Works and Motivations -- 4.2.2 Mathematical Models -- 4.2.2.1 The Hysteresis-Based Oscillator -- 4.2.2.2 The Repressilator -- 4.2.2.3 The Composite Oscillator -- 4.2.3 Dynamical Analysis of the Merged Genetic Oscillator -- 4.2.3.1 The Two Oscillatory Mechanisms Support Each Other -- 4.2.3.2 Oscillatory Mechanisms Are Distinct -- 4.2.4 Population Dynamics of Coupled Composite Oscillators -- 4.2.5 Summary -- 4.3 Modeling and Analysis of the Genetic Toggle Switch Circuit -- 4.3.1 Related Works and Motivations -- 4.3.2 Modeling and Analysis of the Single Toggle Switch System -- 4.3.2.1 Deterministic Model -- 4.3.2.2 Bistability -- 4.3.2.3 Stochastic Model for the Single Toggle Switch System -- 4.3.3 Modeling the Networked Toggle Switch Systems. , 4.3.4 Statistical Measurements -- 4.3.5 Stochastic Switch in the Single Toggle Switch System -- 4.3.6 Synchronized Switching in Networked Toggle Switch Systems -- 4.3.6.1 Feature Comparison Between White and Colored Noises Induced Synchronized Switching -- 4.3.6.2 Colored Noise Can Promote the Mean Protein Numbers -- 4.3.6.3 Robustness of Synchronized Switching Against Parameter Perturbations -- 4.3.6.4 Effect of Noise Autocorrelation Time -- 4.3.7 Physical Mechanisms of Bistable Switch -- 4.3.8 Some Further Issues -- 4.3.9 Summary -- 4.4 Discussions and Conclusions -- References -- 5 Modeling and Analysis of Large-Scale Networks -- 5.1 Backgrounds -- 5.2 Continuous Models for the Yeast Cell Cycle Network -- 5.2.1 Related Works and Motivations -- 5.2.2 Dynamical Analysis -- 5.2.3 Summary -- 5.3 Discrete Models for the Yeast Cell Cycle Network -- 5.3.1 Related Works and Motivations -- 5.3.2 Dynamical Analysis -- 5.3.3 Statistical Analysis -- 5.3.3.1 Comparison with Random Networks -- 5.3.3.2 Network Perturbations -- 5.3.4 Summary -- 5.4 Percolating Flow Model for a Mammalian Cellular Network -- 5.4.1 Related Works and Motivations -- 5.4.2 Dynamical Analysis -- 5.4.3 Statistical Analysis -- 5.4.4 Summary -- 5.5 A Hybrid Model for Mammalian Cell Cycle Regulation -- 5.5.1 Related Works and Motivations -- 5.5.2 The Hybrid Model -- 5.5.3 Dynamical Analysis of the Hybrid Model -- 5.5.4 Summary -- 5.6 General Hybrid Model for Large-Scale Bio-Molecular Networks -- 5.6.1 Related Works and Motivations -- 5.6.2 The General Hybrid Model -- 5.6.3 Hybrid Modeling and Analysis of a Toy Genetic Network -- 5.6.3.1 Dynamical Analysis of the Hybrid Model -- 5.6.3.2 Statistical Analysis -- 5.6.4 Summary -- 5.7 Discussions and Conclusions -- References -- Part II Statistical Analysis of Biological Networks -- 6 Evolutionary Mechanisms of Network Motifs in PPI Networks. , 6.1 Backgrounds.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...