GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Singapore :Springer,  (1)
  • English  (1)
  • 1
    Online Resource
    Online Resource
    Singapore :Springer,
    Keywords: Urban ecology (Biology). ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (474 pages)
    Edition: 1st ed.
    ISBN: 9789811991233
    DDC: 577.56
    Language: English
    Note: Intro -- Preface -- Contents -- Part I Theoretical Framework -- 1 Connotations of Urban Metabolism -- 1.1 The Concept of an Urban Organism and Ecosystem -- 1.2 Multi-level Similarity of Urban Systems to Organisms -- 1.2.1 Similarity of the Structural Hierarchy -- 1.2.2 Similarity of the Functional Mechanisms -- 1.3 Evolution of the Concept of an Urban Metabolism -- 1.4 Urban Metabolic Processes -- 1.4.1 Metabolic Phases -- 1.4.2 External and Internal Flows -- 1.4.3 Anabolism, Catabolism, and Regulatory Metabolism -- 1.4.4 Metabolic Linkages -- 1.4.5 Metabolic Chains -- 1.4.6 Classification of the Metabolic Actors -- 1.4.7 Characteristics of the Metabolic Actors -- 1.5 Urban Metabolic Characteristics -- 1.5.1 Growth and Development -- 1.5.2 Openness and Dependency -- 1.5.3 Stability and Robustness -- References -- 2 Progress in Urban Metabolism Research -- 2.1 The Significance of Urban Metabolism Research -- 2.1.1 Feasibility -- 2.1.2 Necessity -- 2.1.3 Urgency -- 2.2 CiteSpace Knowledge Mapping Analysis -- 2.2.1 The Number of Publications -- 2.2.2 Collaborative Network Analysis -- 2.2.3 Discipline Co-occurrence Analysis -- 2.3 Research Frontier Analysis -- 2.3.1 Timeline Analysis -- 2.3.2 Cluster Analysis -- 2.3.3 Burst Analysis -- 2.3.4 Cluster Analysis for Co-cited References -- 2.3.5 Analysis of High-Frequency Co-cited Literature -- 2.4 Development Stage of Urban Metabolism Research -- 2.4.1 Early Period (1965-1980) -- 2.4.2 Slow Growth Period (1981-2000) -- 2.4.3 Rising Period (2001-Present) -- 2.5 Historical Evolution of Urban Metabolism Research -- 2.5.1 Accounting Evaluation Methods -- 2.5.2 Model Simulation -- 2.5.3 Application Research -- 2.5.4 Scales and Boundaries -- References -- 3 Theory, Paradigms, and Technical Methods for Urban Metabolism -- 3.1 Composite Ecosystem Theory -- 3.1.1 Natural Subsystem -- 3.1.2 Socioeconomic Subsystem. , 3.1.3 Structural Features -- 3.1.4 Balance Between Pressure and Support -- 3.2 Thermodynamics Theory -- 3.2.1 Vitality Metabolism -- 3.2.2 Entropy -- 3.3 System Ecology Theory -- 3.3.1 Integration of Holism and Reductionism -- 3.3.2 Urban Metabolism Research Based on Systems Ecology -- 3.4 Research Paradigms -- 3.4.1 The Relationship Among the Three Research Paradigms -- 3.4.2 Natural Metabolism -- 3.4.3 Socioeconomic Metabolism -- 3.4.4 Integrated (Hybrid) Natural and Socioeconomic Metabolism Paradigm -- 3.5 Technical Framework -- References -- Part II Methods -- 4 Accounting Evaluation of Urban Metabolism -- 4.1 Material Flow Analysis -- 4.1.1 Flow Accounting -- 4.1.2 Stock Accounting -- 4.2 Substance Flow Analysis -- 4.2.1 Carbon Accounting -- 4.2.2 Nitrogen Accounting -- 4.3 Emergy Analysis -- 4.4 Measuring the system's Evolution -- 4.4.1 Measurement Index System -- 4.4.2 Information Entropy Index -- 4.4.3 Harmonious Development Model -- 4.5 Measuring Interactions Between the Natural and Socioeconomic Systems -- 4.5.1 Measurement Index System -- 4.5.2 Sustainability Index -- References -- 5 Network Models to Simulate Urban Metabolism -- 5.1 Network Models Based on Physical Metabolism -- 5.1.1 Urban Water Metabolic Network Models -- 5.1.2 Urban Energy Metabolic Network Models -- 5.1.3 Urban Carbon and Nitrogen Metabolic Network Models -- 5.1.4 Urban Material Metabolic Network Models -- 5.1.5 Urban Emergy Metabolic Network Models -- 5.2 Spatially Explicit Models Based on Land Use and Cover Change -- 5.2.1 Principles for Developing Spatially Explicit Carbon Metabolic Network Models -- 5.2.2 Spatially Explicit Models of an Urban Carbon Metabolic Network -- 5.3 Network Models Based on Input-Output Tables -- 5.3.1 Development of an Input-Output Table -- 5.3.2 Compilation of the Input-Output Table Based on the Material Consumption Intensity Coefficient. , 5.3.3 Analogy Between Trophic Levels and Metabolic Network Models -- 5.3.4 Compilation of the Input-Output Table Based on the Energy Consumption Intensity Coefficient -- 5.4 Simulation of Network Characteristics -- 5.4.1 Network Structure Simulation -- 5.4.2 Network Function Simulation -- 5.4.3 Network Path Simulation -- References -- 6 Regulation and Optimization of an Urban Metabolism -- 6.1 Factor Decomposition Models -- 6.1.1 Decomposition Model for an Urban Carbon Metabolism -- 6.1.2 Refine the Decomposition Model for the Social and Economic Factors -- 6.1.3 Classification Model for Energy-Related Carbon Emission -- 6.1.4 Decomposition Model for an Urban Nitrogen Metabolism -- 6.1.5 Decomposition Model of Material Metabolism -- 6.2 Decoupling State Criteria -- 6.3 Center of Gravity Model -- 6.4 System Dynamics Simulation Model -- 6.4.1 Optimization Model for a City's Industrial Structure -- 6.4.2 Optimization Model for Human Carrying Capacity -- References -- Part III Applications -- 7 Analysis of Material Metabolic Process: Urban Weight -- 7.1 Urban Weight Analysis from a Flow Perspective -- 7.1.1 Analysis of Urban Flows' Weight and Its Structure -- 7.1.2 Contributions of the Metabolic Components -- 7.1.3 Identification of the Driving Forces Behind the Urban Weight -- 7.1.4 The Significance of Measuring Urban Weight from the Flow Perspective -- 7.1.5 Comparisons with Other Cities -- 7.1.6 Diagnosis of and Solutions to Material Metabolism Problems in Beijing -- 7.2 Urban Weight Analysis for Beijing from the Perspective of Stocks -- 7.2.1 Analysis of Urban Stocks' Weight and Its Structure -- 7.2.2 Structural Analysis of the Stock Subtypes -- 7.2.3 Changes in the Relationship Between the Weights and Socioeconomic Factors -- 7.2.4 The Significance of Measuring Urban Weight from the Stock Perspective -- 7.2.5 Comparison with Other Research. , 7.2.6 Diagnosis of Metabolic Disorders in Beijing from a Stock Perspective and Recommended Solutions -- 7.3 Identification of Key Entities in Beijing's Material Metabolism -- 7.3.1 Relevance Analysis -- 7.3.2 Analysis of the Ecological Relationships -- 7.3.3 Identifying the Key Actors -- 7.3.4 Conclusions and Prospects -- References -- 8 Analysis of a City's Energy Metabolism -- 8.1 Analysis of Energy Metabolic Processes -- 8.1.1 Analysis of a Metabolic Network -- 8.1.2 Shifts of the Centers of Gravity for Energy Production and Consumption -- 8.1.3 Advantages of Models with Different Precision -- 8.1.4 Diagnosis of Urban Energy Metabolism Problems and Potential Solutions -- 8.1.5 Spatial Patterns of Supply and Demand for the Energy Types -- 8.1.6 Conclusions Related to the Centers of Gravity for Energy Supply and Demand -- 8.2 Analysis of the Characteristics of Urban Emergy Metabolic Networks -- 8.2.1 Metabolic Characteristics -- 8.2.2 Metabolic Paths and Relationships -- 8.2.3 Management Suggestions Based on Beijing's Emergy Accounting Evaluation -- 8.2.4 Suggestions for Improving the Urban Energy Metabolic Network -- 8.3 Analysis of the Embodied Energy Metabolism Network of the Beijing-Tianjin-Hebei Region -- 8.3.1 Analysis of the Embodied Energy Metabolism of the Nodes -- 8.3.2 Analysis of the Embodied Energy Metabolism of Paths -- 8.3.3 Relationships Analysis -- 8.3.4 Research Innovations and Comparison with Previous Research -- 8.3.5 Policy Recommendations -- 8.3.6 Importance of Multi-Scale Comparative Analysis -- References -- 9 Analysis of Carbon Metabolic Processes -- 9.1 Identification of the Key Metabolic Actors in the Urban Carbon System -- 9.1.1 Changes of the Carbon Metabolism and Its Structure -- 9.1.2 Identification of the Key Actors Based on the Carbon Imbalance Index. , 9.1.3 Identification of Key Actors Based on the Carbon External Dependence Index -- 9.1.4 Comparison with Previous Research -- 9.1.5 Explanations of the Research Results -- 9.2 Spatial Analysis for the Carbon Metabolism of an Urban Agglomeration -- 9.2.1 Carbon Metabolism Accounting and Its Spatial Distribution -- 9.2.2 Impact of Land Use Changes on the Carbon Emission and Absorption -- 9.2.3 Comparison of Carbon Spatial Variation with Other Studies -- 9.2.4 Comparison of the Impact of Land Use Change on Carbon Throughput with Previous Research -- 9.3 Spatial Network Analysis of Beijing's Carbon Metabolism -- 9.3.1 General Spatial Characteristics -- 9.3.2 Ecological Relationships and Their Spatial Patterns -- 9.3.3 Comparison with Previous Research on Spatial Distributions -- 9.3.4 Comparison with Previous Research on Ecological Relationships -- 9.4 Path Analysis of the Carbon Involved in Trade Between the United States and China -- 9.4.1 CO2 Transfers in Imports and Exports -- 9.4.2 Import Links Among Sectors in the United States and China -- 9.4.3 Export Links Among Sectors in the United States and China -- 9.4.4 Adjustment of the Carbon Mitigation Targets to Account for CO2 Transfers in Trade -- 9.4.5 The Importance of the Research Perspective -- 9.4.6 Comparison with Previous Research -- References -- 10 Analysis of the Urban Nitrogen Metabolism -- 10.1 Accounting for Nitrogen Metabolism and Its Key Influencing Factors in Beijing -- 10.1.1 Analysis of the Total Input of Reactive Nitrogen -- 10.1.2 Analysis of the Structural Characteristics of the Reactive Nitrogen Inputs -- 10.1.3 Analysis of Anthropogenic Nitrogen Consumption -- 10.1.4 Contributions of Influencing Factors -- 10.1.5 Comparison with Previous Research on the Total Characteristics of Urban Nitrogen Metabolism. , 10.1.6 Comparison with Previous Research on the Structural Characteristics of Urban Nitrogen Metabolism.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...