GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Industrial microorganisms.  (1)
  • Newark :John Wiley & Sons, Incorporated,  (1)
  • English  (1)
Document type
Keywords
Publisher
  • Newark :John Wiley & Sons, Incorporated,  (1)
Language
  • English  (1)
Years
  • 1
    Online Resource
    Online Resource
    Newark :John Wiley & Sons, Incorporated,
    Keywords: Genetic engineering. ; Industrial microorganisms. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (290 pages)
    Edition: 1st ed.
    ISBN: 9781118433003
    DDC: 579/.163
    Language: English
    Note: Intro -- Title page -- Copyright page -- Contents -- Foreword -- Preface -- Contributors -- 1: Classical Strain Improvement -- 1.0 Introduction -- 1.1 The Approach Defined -- 1.2 Mutagenesis -- 1.2.1 Numerical Considerations in Screen Design -- 1.2.2 Random Genetic Drift -- 1.2.3 Forced Mutagenesis -- 1.2.4 Strain Mating -- 1.3 Genotypic Landscapes -- 1.4 Screening -- 1.4.1 Rational Screens -- 1.4.2 Random Screens -- 1.4.3 Screening Platforms -- 1.5 Conclusions -- References -- 2: Tracer-Based Analysis of Metabolic Flux Networks -- 2.0 Introduction -- 2.1 Setting Up a Stoichiometric Network Model -- 2.2 Small-Scale Models versus Genome Scale Models -- 2.3 Network Analysis: Maximum Theoretical Yield -- 2.4 (Stoichiometric) Metabolic Flux Analysis -- 2.5 Carrying Out a Labeling Experiment -- 2.6 MEASURING ISOTOPE LABELING PATTERNS -- 2.7 Tracer-Based MFA -- 2.8 Validating Metabolic Flux Networks -- 2.9 Conclusions -- Acknowledgments -- References -- 3: Integration of "Omics" Data with Genome-Scale Metabolic Models -- 3.0 Introduction -- 3.1 Genome-Scale Metabolic Networks -- 3.2 Constraint-Based Modeling Theory -- 3.3 Current Analysis of Omics Data -- 3.4 New Approaches to Developing Model Constraints -- 3.5 Use of Gene Expression Data in Metabolic Models -- 3.6 Use of Metabolomics Data in Metabolic Models: TMFA Example -- 3.7 Integration of Multiple Omics Data Sets -- 3.8 Future Directions and Applications to Strain Engineering -- References -- 4: Strain Improvement via Evolutionary Engineering -- 4.0 Introduction -- 4.1 Methodologies for Evolutionary Engineering -- 4.1.1 Adaptive Evolution -- 4.1.2 Genome Shuffling -- 4.1.3 Global Transcriptional Machinery Engineering -- 4.1.4 Transposon Insertion Mutagenesis -- 4.1.5 Multiplex Automated Genome Engineering -- 4.1.6 Tractable Multiplex Recombineering. , 4.1.7 Chemically Induced Chromosomal Evolution -- 4.1.8 Multiscale Analysis of Library Enrichment (SCALE) -- 4.1.9 Screening and Selection -- 4.2 Examples of Evolutionary Engineering -- 4.2.1 Enhancement of Product Yield and Productivity -- 4.2.2 Extension of Substrate Range -- 4.2.3 Improvement of Cellular Properties -- 4.3 Conclusions and Future Prospects -- Acknowledgments -- References -- 5: Rapid Fermentation Process Development and Optimization -- 5.0 Introduction -- 5.1 Overview of Classical Fermentation Process Development Methodology -- 5.1.1 Noninvasive Sensor Technologies -- 5.2 Fermentation Process Development and Optimization -- 5.2.1 Medium Design and Optimization -- 5.2.2 Optimization of Growth Conditions -- 5.3 Rapid Process Development and Optimization Using Conventional Fermentation System -- 5.3.1 Dynamic DO Control to Determine Optimal Feed Rate for Carbon Source-Limited Fermentation -- 5.3.2 Feed Forward Control for Carbon Source Excess Fermentation -- 5.4 Strain Evaluation and Process Optimization under Scale-Down Conditions -- 5.4.1 Identify Scale-Down Parameters -- 5.4.2 Scale-Down of Mixing Related Parameters -- 5.4.3 Oxygen Uptake Rate (OUR) Clipping -- 5.4.4 Dissolved CO2 -- 5.5 Control and Sensor Technologies for Minibioreactor -- 5.5.1 Temperature Sensing and Control -- 5.5.2 Mixing -- 5.5.3 DO -- 5.5.4 pH -- 5.5.5 Cell Concentration -- 5.5.6 Feeding -- 5.6 Commercial High-Throughput Fermentation Systems -- 5.6.1 Shaken Minibioreactors -- 5.6.2 Stirred Minibioreactor -- 5.6.3 Parallel Benchtop Fermentation System -- 5.7 Trends in Development of High the greata-Throughput Minibioreactor System -- 5.8 Case Studies of Fermentation Process Development and Optimization Using High-Throughput Minibioreactors -- 5.8.1 Case Study 1: Protein Production -- 5.8.2 Case Study 2: Antibody Fragment Expression. , 5.9 Conclusions and THE Path Forward -- References -- 6: The Clavulanic Acid Strain Improvement Program at DSM Anti-Infectives -- 6.0 Introduction -- 6.1 The Biosynthetic Pathway to Clavulanic Acid -- 6.2 The Strategy for Improvement of Multiple Complex Phenotypes -- 6.3 Results and Discussion -- 6.3.1 The Panlabs Years-Results from 1991 to 1999 -- 6.3.2 The DSM Years-Results from 1999 to 2006 -- 6.4 Future Perspectives -- Acknowledgments -- References -- 7: Metabolic Engineering of Recombinant E. coli for the Production of 3-Hydroxypropionate -- 7.0 Introduction to Biosynthesis of 3-Hydroxypropionic Acid -- 7.1 Organic Acid Toxicity -- 7.2 Understanding 3-HP Toxicity -- 7.2.1 Choosing an Approach for Evolving Tolerance -- 7.2.2 Selection Design for Evolving 3-HP Tolerance -- 7.2.3 Taking a Closer Look at Selection Design -- 7.2.4 Constructing the 3-HP Toleragenic Complex -- 7.3 Strain Design -- 7.3.1 Evaluation of the 3-HP-TGC -- 7.3.2 Complex Tolerant Phenotype: Metabolism of 3-HP to a Toxic Intermediate -- 7.4 Combining 3-HP Tolerance and 3-HP Production -- 7.5 Summary -- References -- 8: Complex System Engineering: A Case Study for an Unsequenced Microalga -- 8.0 Historical Perspective -- 8.1 Analysis of Algal Biomass Composition -- 8.1.1 Defining the Parameters of an "Ideal" Strain -- 8.1.2 Tool Development for the Analysis of Growth and Lipid Production -- 8.1.3 Selection and Characterization of a Promising C. vulgaris Strain -- 8.2 Development of Hypothesis-Driven Strain Improvement Strategies -- 8.2.1 Systems Biology Analysis in an Unsequenced Microalga -- 8.2.2 Transcriptome-to-Proteome Pipelining -- 8.2.3 Identification of Strain Engineering Targets -- 8.3 Implementation of Biological Tools I-Development of a Transformation System -- 8.3.1 Vector Construction -- 8.3.2 Protoplast Preparation and Transformation of C. vulgaris UTEX395. , 8.3.3 Stability Evaluation of Transformants -- 8.3.4 C. vulgaris Endogenous Promoter Identification and Characterization -- 8.4 Implementation of Biological Tools II-Development of a Self-Lysing, Oil-Producing Alga for Biofuels Production -- 8.4.1 Algal Lipid Extraction -- 8.4.2 Algal Cell Wall Complexity and Enzymatic Treatment Effects -- 8.4.3 High-Resolution Imaging of Enzymatic Treatment Effects -- 8.4.4 Production Strain Development -- 8.5 Concluding Remarks -- Acknowledgments -- References -- 9: Meiotic Recombination-Based Genome Shuffling of Saccharomyces cerevisiae and Schefferomyces stiptis for Increased Inhibitor Tolerance to Lignocellulosic Substrate Toxicity -- 9.0 Introduction -- 9.1 Methodology -- 9.1.1 Meiotic Recombination-Mediated Genome Shuffling -- 9.1.2 Inducing Genome Shuffling through Meiosis versus Protoplast Fusion -- 9.2 Results and Discussion of Strain Development -- 9.2.1 Generation of Mutant Pools -- 9.2.2 Screening and Selection of Mutant and Evolved Populations -- 9.2.3 Increasing HWSSL Tolerance through Genome Shuffling -- 9.2.4 Tolerance to HWSSL Leads to Increased Ethanol Production -- 9.2.5 Tolerance to HWSSL Leads to Cross-Tolerance to Multiple Inhibitors -- 9.2.6 Comparison between the S. stipitis and S. cerevisiae Genome Shuffling Studies -- 9.3 Conclusions and Future Directions -- References -- Index -- Supplemental Images.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...