GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Electronic books.  (2)
  • Milton :Taylor & Francis Group,  (1)
  • Newark :John Wiley & Sons, Incorporated,  (1)
  • English  (2)
  • 1
    Online Resource
    Online Resource
    Newark :John Wiley & Sons, Incorporated,
    Keywords: Genetic engineering. ; Industrial microorganisms. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (290 pages)
    Edition: 1st ed.
    ISBN: 9781118433003
    DDC: 579/.163
    Language: English
    Note: Intro -- Title page -- Copyright page -- Contents -- Foreword -- Preface -- Contributors -- 1: Classical Strain Improvement -- 1.0 Introduction -- 1.1 The Approach Defined -- 1.2 Mutagenesis -- 1.2.1 Numerical Considerations in Screen Design -- 1.2.2 Random Genetic Drift -- 1.2.3 Forced Mutagenesis -- 1.2.4 Strain Mating -- 1.3 Genotypic Landscapes -- 1.4 Screening -- 1.4.1 Rational Screens -- 1.4.2 Random Screens -- 1.4.3 Screening Platforms -- 1.5 Conclusions -- References -- 2: Tracer-Based Analysis of Metabolic Flux Networks -- 2.0 Introduction -- 2.1 Setting Up a Stoichiometric Network Model -- 2.2 Small-Scale Models versus Genome Scale Models -- 2.3 Network Analysis: Maximum Theoretical Yield -- 2.4 (Stoichiometric) Metabolic Flux Analysis -- 2.5 Carrying Out a Labeling Experiment -- 2.6 MEASURING ISOTOPE LABELING PATTERNS -- 2.7 Tracer-Based MFA -- 2.8 Validating Metabolic Flux Networks -- 2.9 Conclusions -- Acknowledgments -- References -- 3: Integration of "Omics" Data with Genome-Scale Metabolic Models -- 3.0 Introduction -- 3.1 Genome-Scale Metabolic Networks -- 3.2 Constraint-Based Modeling Theory -- 3.3 Current Analysis of Omics Data -- 3.4 New Approaches to Developing Model Constraints -- 3.5 Use of Gene Expression Data in Metabolic Models -- 3.6 Use of Metabolomics Data in Metabolic Models: TMFA Example -- 3.7 Integration of Multiple Omics Data Sets -- 3.8 Future Directions and Applications to Strain Engineering -- References -- 4: Strain Improvement via Evolutionary Engineering -- 4.0 Introduction -- 4.1 Methodologies for Evolutionary Engineering -- 4.1.1 Adaptive Evolution -- 4.1.2 Genome Shuffling -- 4.1.3 Global Transcriptional Machinery Engineering -- 4.1.4 Transposon Insertion Mutagenesis -- 4.1.5 Multiplex Automated Genome Engineering -- 4.1.6 Tractable Multiplex Recombineering. , 4.1.7 Chemically Induced Chromosomal Evolution -- 4.1.8 Multiscale Analysis of Library Enrichment (SCALE) -- 4.1.9 Screening and Selection -- 4.2 Examples of Evolutionary Engineering -- 4.2.1 Enhancement of Product Yield and Productivity -- 4.2.2 Extension of Substrate Range -- 4.2.3 Improvement of Cellular Properties -- 4.3 Conclusions and Future Prospects -- Acknowledgments -- References -- 5: Rapid Fermentation Process Development and Optimization -- 5.0 Introduction -- 5.1 Overview of Classical Fermentation Process Development Methodology -- 5.1.1 Noninvasive Sensor Technologies -- 5.2 Fermentation Process Development and Optimization -- 5.2.1 Medium Design and Optimization -- 5.2.2 Optimization of Growth Conditions -- 5.3 Rapid Process Development and Optimization Using Conventional Fermentation System -- 5.3.1 Dynamic DO Control to Determine Optimal Feed Rate for Carbon Source-Limited Fermentation -- 5.3.2 Feed Forward Control for Carbon Source Excess Fermentation -- 5.4 Strain Evaluation and Process Optimization under Scale-Down Conditions -- 5.4.1 Identify Scale-Down Parameters -- 5.4.2 Scale-Down of Mixing Related Parameters -- 5.4.3 Oxygen Uptake Rate (OUR) Clipping -- 5.4.4 Dissolved CO2 -- 5.5 Control and Sensor Technologies for Minibioreactor -- 5.5.1 Temperature Sensing and Control -- 5.5.2 Mixing -- 5.5.3 DO -- 5.5.4 pH -- 5.5.5 Cell Concentration -- 5.5.6 Feeding -- 5.6 Commercial High-Throughput Fermentation Systems -- 5.6.1 Shaken Minibioreactors -- 5.6.2 Stirred Minibioreactor -- 5.6.3 Parallel Benchtop Fermentation System -- 5.7 Trends in Development of High the greata-Throughput Minibioreactor System -- 5.8 Case Studies of Fermentation Process Development and Optimization Using High-Throughput Minibioreactors -- 5.8.1 Case Study 1: Protein Production -- 5.8.2 Case Study 2: Antibody Fragment Expression. , 5.9 Conclusions and THE Path Forward -- References -- 6: The Clavulanic Acid Strain Improvement Program at DSM Anti-Infectives -- 6.0 Introduction -- 6.1 The Biosynthetic Pathway to Clavulanic Acid -- 6.2 The Strategy for Improvement of Multiple Complex Phenotypes -- 6.3 Results and Discussion -- 6.3.1 The Panlabs Years-Results from 1991 to 1999 -- 6.3.2 The DSM Years-Results from 1999 to 2006 -- 6.4 Future Perspectives -- Acknowledgments -- References -- 7: Metabolic Engineering of Recombinant E. coli for the Production of 3-Hydroxypropionate -- 7.0 Introduction to Biosynthesis of 3-Hydroxypropionic Acid -- 7.1 Organic Acid Toxicity -- 7.2 Understanding 3-HP Toxicity -- 7.2.1 Choosing an Approach for Evolving Tolerance -- 7.2.2 Selection Design for Evolving 3-HP Tolerance -- 7.2.3 Taking a Closer Look at Selection Design -- 7.2.4 Constructing the 3-HP Toleragenic Complex -- 7.3 Strain Design -- 7.3.1 Evaluation of the 3-HP-TGC -- 7.3.2 Complex Tolerant Phenotype: Metabolism of 3-HP to a Toxic Intermediate -- 7.4 Combining 3-HP Tolerance and 3-HP Production -- 7.5 Summary -- References -- 8: Complex System Engineering: A Case Study for an Unsequenced Microalga -- 8.0 Historical Perspective -- 8.1 Analysis of Algal Biomass Composition -- 8.1.1 Defining the Parameters of an "Ideal" Strain -- 8.1.2 Tool Development for the Analysis of Growth and Lipid Production -- 8.1.3 Selection and Characterization of a Promising C. vulgaris Strain -- 8.2 Development of Hypothesis-Driven Strain Improvement Strategies -- 8.2.1 Systems Biology Analysis in an Unsequenced Microalga -- 8.2.2 Transcriptome-to-Proteome Pipelining -- 8.2.3 Identification of Strain Engineering Targets -- 8.3 Implementation of Biological Tools I-Development of a Transformation System -- 8.3.1 Vector Construction -- 8.3.2 Protoplast Preparation and Transformation of C. vulgaris UTEX395. , 8.3.3 Stability Evaluation of Transformants -- 8.3.4 C. vulgaris Endogenous Promoter Identification and Characterization -- 8.4 Implementation of Biological Tools II-Development of a Self-Lysing, Oil-Producing Alga for Biofuels Production -- 8.4.1 Algal Lipid Extraction -- 8.4.2 Algal Cell Wall Complexity and Enzymatic Treatment Effects -- 8.4.3 High-Resolution Imaging of Enzymatic Treatment Effects -- 8.4.4 Production Strain Development -- 8.5 Concluding Remarks -- Acknowledgments -- References -- 9: Meiotic Recombination-Based Genome Shuffling of Saccharomyces cerevisiae and Schefferomyces stiptis for Increased Inhibitor Tolerance to Lignocellulosic Substrate Toxicity -- 9.0 Introduction -- 9.1 Methodology -- 9.1.1 Meiotic Recombination-Mediated Genome Shuffling -- 9.1.2 Inducing Genome Shuffling through Meiosis versus Protoplast Fusion -- 9.2 Results and Discussion of Strain Development -- 9.2.1 Generation of Mutant Pools -- 9.2.2 Screening and Selection of Mutant and Evolved Populations -- 9.2.3 Increasing HWSSL Tolerance through Genome Shuffling -- 9.2.4 Tolerance to HWSSL Leads to Increased Ethanol Production -- 9.2.5 Tolerance to HWSSL Leads to Cross-Tolerance to Multiple Inhibitors -- 9.2.6 Comparison between the S. stipitis and S. cerevisiae Genome Shuffling Studies -- 9.3 Conclusions and Future Directions -- References -- Index -- Supplemental Images.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Milton :Taylor & Francis Group,
    Keywords: Environmental chemistry. ; Electronic books.
    Description / Table of Contents: Environmental Chemical Analysis provides an explanation of analytical instrumentation methods for students without a background in analytical chemistry.
    Type of Medium: Online Resource
    Pages: 1 online resource (451 pages)
    Edition: 2nd ed.
    ISBN: 9780429857034
    DDC: 577/.14
    Language: English
    Note: Cover -- Half Title -- Title Page -- Copyright Page -- Dedication -- Contents -- Preface -- Authors -- Chapter 1: Introduction to Environmental Measurements -- 1.1 Role of Measurement in Environmental Studies -- 1.1.1 Units of Measurement -- 1.1.2 Conversions between Units -- 1.1.3 Significant Figures -- 1.2 Pollutants: Sources and Measurements -- 1.2.1 Classes of Environmental Contaminants -- 1.2.1.1 Products of Combustion -- 1.2.1.2 Industrial Emissions -- 1.2.1.3 Other Sources of Environmental Contamination -- 1.2.2 Regulating the Environment -- 1.3 Design of Environmental Studies -- 1.3.1 Sampling and Analysis -- 1.4 Basic Statistical Data Handling -- 1.4.1 Errors in Quantitative Analysis -- 1.4.2 Statistics of Repeated Measurements: Precision -- 1.4.2.1 Precision and Standard Deviation -- 1.4.3 Distribution of Error -- 1.4.4 Confidence Interval and the t-Distribution -- 1.4.4.1 Estimation of Mean from Several Sets of Measurements -- 1.4.4.2 Estimation of Standard Deviation from Several Sets of Measurements -- 1.5 Significance Tests -- 1.5.1 Hypothesis Testing -- 1.5.1.1 Comparison between a Measured and a Known Value -- 1.5.1.2 Comparison of the Mean of Two Samples -- 1.5.1.3 Comparison of Standard Deviations Using the F-Test -- 1.5.2 Outliers -- 1.5.2.1 Rule of the Huge Error -- 1.5.2.2 Dixon Test for Rejection of Outliers -- 1.5.3 Reporting Data -- 1.6 Standards and Calibration -- 1.6.1 Calibration Methods -- 1.6.2 Standard Addition Method -- 1.7 Performance of Analytical Methods: Figures of Merit -- 1.7.1 Sensitivity -- 1.7.2 Detection Limit -- 1.7.3 Range of Quantitation -- 1.7.4 Validation of New Methods -- Study Questions -- Chapter 2: Environmental Sampling -- 2.1 The Sampling Plan -- 2.1.1 Spatial and Temporal Variability -- 2.1.2 Development of the Plan -- 2.1.3 Sampling Strategies -- 2.1.3.1 Systematic Sampling. , 2.1.3.2 Random Sampling -- 2.1.3.3 Judgmental Sampling -- 2.1.3.4 Stratified Sampling -- 2.1.3.5 Haphazard Sampling -- 2.1.3.6 Continuous Monitoring -- 2.2 Types of Samples -- 2.3 Sampling and Analysis -- 2.3.1 Samples in the Laboratory -- 2.4 Statistical Aspects of Sampling -- 2.5 Water Sampling -- 2.5.1 Surface Water Sampling -- 2.5.2 Ground Water Well Sampling -- 2.6 Biological Tissue Sampling -- 2.7 Soil Sampling -- 2.8 Sampling Stratified Levels in Containers -- 2.9 Preservation of Samples -- 2.9.1 Volatilization -- 2.9.2 Choice of Proper Containers -- 2.9.3 Absorption of Gases from the Atmosphere -- 2.9.4 Chemical Changes -- 2.9.5 Sample Preservation for Soil, Sludges, and Hazardous Wastes -- Study Questions -- Chapter 3: Spectroscopic Methods -- 3.1 Spectroscopic Methods for Environmental Analysis -- 3.1.1 Properties of Electromagnetic Radiation -- 3.1.2 The Electromagnetic Spectrum -- 3.1.3 Radiation and Matter -- 3.2 Absorption Spectroscopy -- 3.2.1 Beer's Law -- 3.3 Emission Spectroscopy -- 3.3.1 Fluorescence -- 3.3.2 Atomic Emission -- 3.4 Spectroscopic Apparatus -- 3.4.1 Light Sources -- 3.4.2 Wavelength Selection -- 3.4.2.1 Filters -- 3.4.2.2 Monochromators -- 3.4.3 Detectors -- 3.5 Ultraviolet and Visible Absorption Spectroscopy -- 3.5.1 UV and Visible Instrumentation -- 3.5.1.1 Light Sources -- 3.5.1.2 UV-Vis Detectors -- 3.5.1.3 Ultraviolet: Visible Spectroscopy Samples -- 3.5.2 Colorimetry -- 3.6 Infrared Spectroscopy -- 3.6.1 Scanning Infrared Instrumentation -- 3.6.1.1 IR Sources -- 3.6.1.2 Infrared Monochromators -- 3.6.2 Fourier Transform Infrared Spectrometry -- 3.6.2.1 Advantages of FTIR -- 3.6.2.2 Samples for Infrared Spectroscopy -- 3.7 Atomic Absorption Spectroscopy -- 3.7.1 Flame Atomic Absorbance Spectroscopy -- 3.7.2 Graphite Furnace Atomic Absorption Spectrometry -- 3.7.3 Interferences in Atomic Absorption. , 3.7.3.1 Spectral Interference -- 3.7.3.2 Chemical Interference -- 3.7.3.3 Ionization Interference -- 3.7.3.4 Background Correction in Atomic Absorption Spectrometry -- 3.8 Inductively Coupled Plasma Emission Spectroscopy -- 3.8.1 Comparison of Atomic Spectroscopic Methods -- 3.9 X-Ray Fluorescence -- 3.9.1 Wavelength-Dispersive XRF versus Energy-Dispersive XRF -- 3.9.2 X-Ray Instrumentation -- 3.9.2.1 Sources -- 3.9.2.2 X-Ray Detectors -- 3.9.2.3 X-Ray Fluorescence Samples -- 3.10 Hyphenated Spectroscopic Methods -- Study Questions -- Chapter 4: Chromatographic Methods -- 4.1 Principles of Chromatography -- 4.1.1 Column Efficiency -- 4.1.2 The General Elution Problem -- 4.2 Quantitation in Chromatography -- 4.2.1 External Standard Method -- 4.2.2 The Internal Standard Method -- 4.3 Gas Chromatography -- 4.3.1 Injection Devices -- 4.3.2 Columns -- 4.3.2.1 Packed Columns -- 4.3.2.2 Open Tubular Columns -- 4.3.2.3 Column Temperature -- 4.4 GC Detectors -- 4.4.1 Thermal Conductivity Detector -- 4.4.2 Flame Ionization Detector -- 4.4.3 Electron Capture Detector -- 4.4.4 Photoionization Detector -- 4.4.5 Flame Photometric Detector -- 4.4.6 Pulsed Flame Photometric Detector -- 4.4.7 Thermionic or Nitrogen-Phosphorous Detector -- 4.4.8 Pulsed Discharge Detector -- 4.4.9 Mass Selective Detector -- 4.4.10 Comparison of Detectors -- 4.5 High-Performance Liquid Chromatography -- 4.5.1 Reverse Phase Liquid Chromatography -- 4.5.2 Normal Phase Liquid Chromatography -- 4.6 HPLC Instrumentation -- 4.6.1 Solvent Delivery Systems -- 4.6.2 Solvent Gradient Systems -- 4.6.3 Sample Injectors -- 4.6.4 HPLC Columns -- 4.6.4.1 Precolumns and Guard Columns -- 4.6.4.2 Analytical Columns -- 4.6.4.3 Eluents -- 4.7 HPLC Detectors -- 4.7.1 UV Absorption Detectors -- 4.7.2 Fluorescence Detectors -- 4.7.3 Evaporative Light Scattering Detector -- 4.7.4 Mass Spectrometric Detection. , 4.8 Ion Chromatography -- 4.9 Supercritical Fluid Chromatography -- 4.9.1 SFC Instrumentation -- 4.10 Applications of Chromatography in Environmental Analysis -- Study Questions -- Chapter 5: Mass Spectrometry -- 5.1 Interpretation of Spectra -- 5.2 Basic Instrumentation -- 5.2.1 Vacuum System -- 5.2.2 Inlet -- 5.3 Ion Sources -- 5.3.1 Electron Impact Ionization -- 5.3.2 Chemical Ionization -- 5.3.3 Atmospheric Pressure Ionization Sources -- 5.3.4 Proton Transfer Reaction MS -- 5.4 Mass Analyzers -- 5.4.1 Quadrupole Mass Analyzer -- 5.4.2 Magnetic Sector Mass Analyzer -- 5.4.3 The Ion Trap Mass Analyzer -- 5.5 Ion Detectors -- 5.6 Gas Chromatography MS -- 5.7 Liquid Chromatography MS -- 5.8 Inductively Coupled Plasma MS -- 5.9 Data Collection -- 5.10 Library Searching Techniques -- Study Questions -- Chapter 6: Sample Preparation Techniques -- 6.1 Extraction of Organic Analytes from Liquid Samples -- 6.1.1 Liquid-Liquid Extraction -- 6.1.1.1 Successive Extractions -- 6.1.1.2 Instrumentation for LLE -- 6.1.1.3 Continuous LLE -- 6.1.2 Solid-Phase Extraction -- 6.1.2.1 The SPE Process -- 6.1.2.2 Advantages of SPE -- 6.1.3 Solid-Phase Microextraction -- 6.2 Extraction of Organic Analytes from Solid Samples -- 6.2.1 Soxhlet Extraction -- 6.2.2 Accelerated Solvent Extraction -- 6.2.3 Ultrasonic Extraction of Organics -- 6.2.4 Supercritical Fluid Extraction -- 6.2.4.1 Instrumentation -- 6.2.4.2 Choosing SFE Conditions -- 6.2.4.3 Advantages of SFE -- 6.3 Post-Extraction Procedures -- 6.3.1 Concentration of Sample Extracts -- 6.3.2 Sample Cleanup -- 6.4 Extraction of Metals from Sample Matrices -- 6.4.1 Acid Digestion of Samples for Determination of Metals -- 6.4.2 Extraction Procedures -- 6.4.3 Microwave Digestion -- 6.4.4 Ultrasonic Extraction -- 6.4.5 Organic Extraction of Metals -- 6.4.5.1 Formation of Metal Chelates. , 6.5 Speciation of Metals in Environmental Samples -- Study Questions -- Chapter 7: Chemical Methods -- 7.1 Types of Chemical Reactions -- 7.1.1 Precipitation -- 7.1.2 Complexation and Chelation Reactions -- 7.1.3 Oxidation/Reduction Reactions -- 7.1.4 Derivatization Reactions -- 7.1.4.1 Alkylation and Acylation -- 7.1.4.2 Sylilation -- 7.1.4.3 Diazotization -- 7.1.4.4 Selection of Derivatizing Reagent -- 7.2 Wet Methods -- 7.2.1 Titrations -- 7.2.2 Titration Calculations -- 7.2.3 Types of Titrations -- 7.3 Colorimetric Methods -- 7.3.1 Colorimetric Indicating Tubes for Air Pollutants -- Study Questions -- Suggested Reading -- Chapter 8: Electrochemical Methods -- 8.1 Potentiometric Measurements -- 8.1.1 pH Measurement -- 8.1.2 Other Specific Ion Electrodes -- 8.2 Determination of Metals by Voltammetry -- Study Questions -- Chapter 9: Radiochemical Methods -- 9.1 Units of Measurement -- 9.2 Instruments for Measuring Radioactivity -- 9.2.1 Gas: Flow Proportional Counters -- 9.2.2 Alpha Scintillation Counter -- 9.2.3 Liquid Scintillation Counters -- 9.2.4 Alpha Spectrometers -- 9.2.5 Gamma Spectrometers -- 9.3 Determination of Gross Alpha and Gross Beta Radioactivity -- 9.3.1 Evaporation Method -- 9.3.1.1 Gross Activity of the Sample -- 9.3.1.2 Activity of Dissolved and Suspended Matter -- 9.3.1.3 Activity of Semisolid Samples -- 9.3.2 Coprecipitation Method for Gross Alpha Activity -- 9.4 Measurement of Specific Radionuclides -- 9.4.1 Radium -- 9.4.1.1 Precipitation Method and Alpha Counting -- 9.4.1.2 Precipitation and Emanation Method to Measure Radium as Radon-222 -- 9.4.1.3 Sequential Precipitation Method -- 9.4.1.4 Measurement of Radium-224 by Gamma Spectroscopy -- 9.4.2 Radon -- 9.4.3 Uranium -- 9.4.3.1 Determination of Total Alpha Activity -- 9.4.3.2 Determination of Isotopic Content of Uranium Alpha Activity -- 9.4.4 Radioactive Strontium. , 9.4.5 Tritium.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...