GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    Vienna : Sustainable Europe Research Inst. | Wuppertal : Wuppertal Institut für Klima, Umwelt, Energie
    Publication Date: 2016-08-23
    Keywords: ddc:600
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: workingpaper , doc-type:workingPaper
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Wuppertal : Wuppertal Institut für Klima, Umwelt, Energie
    Publication Date: 2016-08-23
    Keywords: ddc:600
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: contributiontoperiodical , doc-type:contributionToPeriodical
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-11-21
    Description: This contribution presents the state of the art of economy-wide material flow accounting. Starting from a brief recollection of the intellectual and policy history of this approach, we outline system definition, key methodological assumptions, and derived indicators. The next section makes an effort to establish data reliability and uncertainty for a number of existing multinational (European and global) material flow accounting (MFA) data compilations and discusses sources of inconsistencies and variations for some indicators and trends. The results show that the methodology has reached a certain maturity: Coefficients of variation between databases lie in the range of 10% to 20%, and correlations between databases across countries amount to an average R2 of 0.95. After discussing some of the research frontiers for further methodological development, we conclude that the material flow accounting framework and the data generated have reached a maturity that warrants material flow indicators to complement traditional economic and demographic information in providing a sound basis for discussing national and international policies for sustainable resource use.
    Keywords: ddc:600
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: article , doc-type:article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Heidelberg : Physica-Verl. | Wuppertal : Wuppertal Institut für Klima, Umwelt, Energie
    Publication Date: 2016-08-23
    Keywords: ddc:320
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: bookpart , doc-type:bookPart
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    London : Springer | Wuppertal : Wuppertal Institut für Klima, Umwelt, Energie
    Publication Date: 2018-11-19
    Description: Managing solid waste is one of the biggest challenges in urban areas around the world. Technologically advanced economies generate vast amounts of organic waste materials, many of which are disposed to landfills. In the future, efficient use of carbon containing waste and all other waste materials has to be increased to reduce the need for virgin raw materials acquisition, including biomass, and reduce carbon being emitted to the atmosphere therefore mitigating climate change. At end-of-life, carbon-containing waste should not only be treated for energy recovery (e.g. via incineration) but technologies should be applied to recycle the carbon for use as material feedstocks. Thermochemical and biochemical conversion technologies offer the option to utilize organic waste for the production of chemical feedstock and subsequent polymers. The routes towards synthetic materials allow a more closed cycle of materials and can help to reduce dependence on either fossil or biobased raw materials. This chapter summarizes carbon-recycling routes available and investigates how in the long-term they could be applied to enhance waste management in both industrial countries as well as developing and emerging economies. We conclude with a case study looking at the system-wide global warming potential (GWP) and cumulative energy demand (CED) of producing high-density polyethylene (HDPE) from organic waste feedstock via gasification followed by Fischer–Tropsch synthesis (FTS). Results of the analysis indicate that the use of organic waste feedstock is beneficial if greenhouse gas (GHG) emissions associated with landfill diversion are considered.
    Keywords: ddc:600
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: bookpart , doc-type:bookPart
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Luxembourg : Office for Official Publications of the Europ. Communities | Wuppertal : Wuppertal Institut für Klima, Umwelt, Energie
    Publication Date: 2018-11-19
    Keywords: ddc:600
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: workingpaper , doc-type:workingPaper
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Dordrecht : Springer
    Publication Date: 2018-11-21
    Description: Global warming, the overall extraction of minerals and the expansion of cultivated land for biomass harvest are growing globally. These "Big Three" represent key environmental pressures which may lead to a continuous degradation of the living environment, if not controlled at levels with acceptable low risk. The situation is complex, because countries and regions consume products which require resources such as minerals and land in various parts of the world. Nevertheless, it is possible to measure the global resource use which is associated with the domestic consumption. In order to inform policies at the national and supranational level whether it may be necessary to adjust the incentive framework for industry and households, reference data are needed to compare the status quo of their countries with what may be deemed acceptable at a global level. This chapter outlines a rationale for the derivation of possible long-term targets for total material consumption of abiotic materials (TMCabiot) and global land use for crops (GLUcropland). The indicated targets are expressed in tentative per capita values which may serve as a first orientation and basis for further debate and research.
    Keywords: ddc:600
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: bookpart , doc-type:bookPart
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-08-23
    Keywords: ddc:600
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: bookpart , doc-type:bookPart
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-11-21
    Description: This study aims to stimulate the discussion on how to optimize a sustainable energy mix from an environmental perspective and how to apply existing renewable energy sources in the most efficient way. Ground-mounted photovoltaics (PV) and the maize-biogas-electricity route are compared with regard to their potential to mitigate environmental pressure, assuming that a given agricultural area is available for energy production. Existing life cycle assessment (LCA) studies are taken as abasis to analyse environmental impacts of those technologies in relation to conventional technology for power and heat generation. The life-cycle-wide mitigation potential per area used is calculated for the impact categories non-renewable energy input, green house gas (GHG) emissions, acidification and eutrophication. The environmental performance of each system depends on the scenario that is assumed for end energy use (electricity and heat supply have been contemplated). In all scenarios under consideration, PV turns out to be superior to biogas in almost all studied impact categories. Even when maize is used for electricity production in connection with very efficient heat usage, and reduced PV performance is assumed to account for intermittence, PV can still mitigate about four times the amount of green house gas emissions and non-renewable energy input compared to maize-biogas. Soil erosion, which can be entirely avoided with PV, exceeds soil renewal rates roughly 20-fold on maize fields. Regarding the overall Eco-indicator 99 (H) score under most favourable assumptions for the maize–biogas route, PV has still a more than 100% higher potential to mitigate environmental burden. At present, the key advantages of biogas are its price and its availability without intermittence. In the long run, and with respect to more efficient land use, biogas might preferably be produced from organic waste or manure, whereas PV should be integrated into buildings and infrastructures.
    Keywords: ddc:600
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: article , doc-type:article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Copenhagen : Europ. Environment Agency | Wuppertal : Wuppertal Institut für Klima, Umwelt, Energie
    Publication Date: 2018-11-19
    Keywords: ddc:600
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: report , doc-type:report
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...