GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    Keywords: Machine learning. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (204 pages)
    Edition: 1st ed.
    ISBN: 9783031223716
    Series Statement: Intelligent Systems Reference Library ; v.236
    DDC: 006.31
    Language: English
    Note: Intro -- Foreword -- References -- Preface -- Contents -- 1 Introduction to Fusion of Machine Learning Paradigms -- 1.1 Editorial -- References -- Part I Recent Application Areas of Fusion of Machine Learning Paradigms -- 2 Artificial Intelligence as Dual-Use Technology -- 2.1 Introduction -- 2.2 What Is DUT -- 2.3 AI: Concepts, Models and Technology -- 2.4 Agent-Based AI and Autonomous System -- 2.4.1 Basic Model of Agent-Based AI -- 2.4.2 Conceptual Model of Autonomous Weapon System -- 2.5 Dual-Use Technology and DARPA -- 2.5.1 Historical View and Role of DARPA -- 2.5.2 DARPA's Contribution to DUT R& -- D on AI -- 2.6 DARPA-Like Organizations in Major Countries -- 2.7 Dual-Use Dilemma -- 2.8 Concluding Remarks -- References -- 3 Diabetic Retinopathy Detection Using Transfer and Reinforcement Learning with Effective Image Preprocessing and Data Augmentation Techniques -- 3.1 Introduction -- 3.2 Background -- 3.2.1 Deep Learning for Diabetic Retinopathy -- 3.2.2 Image Preprocessing Techniques -- 3.2.3 Reinforcement Learning and Deep Learning -- 3.3 Data Augmentation Techniques -- 3.3.1 Traditional Data Augmentation -- 3.3.2 SMOTE-Based Data Augmentation -- 3.3.3 Data Augmentation Using Generative Adversarial Networks -- 3.4 Datasets of Eye Fundus Images -- 3.5 Transfer Learning Experiments -- 3.5.1 Dataset -- 3.5.2 Image Preprocessing -- 3.5.3 Image Augmentation -- 3.5.4 Deep Learning Experiments -- 3.5.5 Reinforcement Learning Experiments -- 3.6 Conclusion and Future Work -- References -- 4 A Novel Approach for Non-linear Deep Fuzzy Rule-Based Model and Its Applications in Biomedical Analyses -- 4.1 Introduction -- 4.2 Method -- 4.2.1 Preliminaries -- 4.2.2 Hierarchical Fuzzy Structure -- 4.2.3 Stacked Deep Fuzzy Rule-Based System (SD-FRBS) -- 4.2.4 Adaptation of the First-Order TSK Structure in SD-FRBS. , 4.2.5 Concatenated Deep Fuzzy Rule-Based System (CD-FRBS) -- 4.3 Data Description and Results -- 4.3.1 MIMIC-III Dataset -- 4.3.2 SD-FRBS as a Multivariate Regressor for Granger Causality Estimation-In EEG Connectivity Index Extraction -- 4.3.3 CD-FRBS in Staging Depression Severity -- 4.4 Discussion and Conclusion -- 4.4.1 Suggested Future Works -- References -- 5 Harmony Search-Based Approaches for Fine-Tuning Deep Belief Networks -- 5.1 Introduction -- 5.2 Theoretical Background -- 5.2.1 Deep Belief Networks -- 5.2.2 Harmony Search -- 5.3 Methodology -- 5.3.1 Datasets -- 5.3.2 Experimental Setup -- 5.4 Experimental Results -- 5.5 Conclusions -- References -- 6 Toward Smart Energy Systems: The Case of Relevance Vector Regression Models in Hourly Solar Power Forecasting -- 6.1 Introduction -- 6.2 Relevance Vector Regression -- 6.3 RVR Based Day Ahead Forecasting -- 6.4 Results -- 6.5 Conclusion -- References -- 7 Domain-Integrated Machine Learning for IC Image Analysis -- 7.1 Introduction -- 7.2 Hierarchical Multi-classifier System -- 7.2.1 Architecture of Hierarchical Multi-classifier System -- 7.2.2 Result and Discussion on Case Study -- 7.3 Deep Learning with Pseudo Labels -- 7.3.1 Methodology -- 7.3.2 Application to IC Image Analysis -- 7.4 Conclusions and Future Works -- References -- Part II Applications that Can Clearly Benefit from Fusion of Machine Learning Paradigms -- 8 Fleshing Out Learning Analytics and Educational Data Mining with Data and ML Pipelines -- 8.1 Introduction -- 8.2 Data and ML Pipelines -- 8.3 Related Work -- 8.4 An Automated EDM and LA Methodology -- 8.4.1 A Data Pipeline Scenario -- 8.4.2 An ML Pipeline Scenario -- 8.5 Experiments and Results -- 8.6 Conclusions and Future Work -- References -- 9 Neural Networks Based Throughput Estimation of Short Production Lines Without Intermediate Buffers -- 9.1 Introduction. , 9.2 Data Sets of i-Stage Production Line Problems -- 9.3 Deep Learning and Multilayer Perceptron -- 9.4 Experimental Process of Deep Learning Approach -- 9.5 Results of Deep Learning Approach -- 9.6 Conclusions -- References.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: Machine learning. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (237 pages)
    Edition: 1st ed.
    ISBN: 9783030767945
    Series Statement: Learning and Analytics in Intelligent Systems Series ; v.23
    DDC: 006.31
    Language: English
    Note: Intro -- Foreword -- Further Reading -- Preface -- Contents -- 1 Introduction to Advances in Machine Learning/Deep Learning-Based Technologies -- 1.1 Editorial Note -- 1.2 Book Summary and Future Volumes -- References -- Part I Machine Learning/Deep Learning in Socializing and Entertainment -- 2 Semi-supervised Feature Selection Method for Fuzzy Clustering of Emotional States from Social Streams Messages -- 2.1 Introduction -- 2.2 The FS-EFCM Algorithm -- 2.2.1 EFCM Execution: Main Steps -- 2.2.2 Initial Parameter Setting -- 2.3 Experimental Results -- 2.3.1 Dataset -- 2.3.2 Feature Selection -- 2.3.3 FS-EFCM at Work -- 2.4 Conclusion -- References -- 3 AI in (and for) Games -- 3.1 Introduction -- 3.2 Game Content and Databases -- 3.3 Intelligent Game Content Generation and Selection -- 3.3.1 Generating Content for a Language Education Game -- 3.4 Conclusions -- References -- Part II Machine Learning/Deep Learning in Education -- 4 Computer-Human Mutual Training in a Virtual Laboratory Environment -- 4.1 Introduction -- 4.1.1 Purpose and Development of the Virtual Lab -- 4.1.2 Different Playing Modes -- 4.1.3 Evaluation -- 4.2 Background and Related Work -- 4.3 Architecture of the Virtual Laboratory -- 4.3.1 Conceptual Design -- 4.3.2 State-Transition Diagrams -- 4.3.3 High Level Design -- 4.3.4 State Machine -- 4.3.5 Individual Scores -- 4.3.6 Quantization -- 4.3.7 Normalization -- 4.3.8 Composite Evaluation -- 4.3.9 Success Rate -- 4.3.10 Weighted Average -- 4.3.11 Artificial Neural Network -- 4.3.12 Penalty Points -- 4.3.13 Aggregate Score -- 4.4 Machine Learning Algorithms -- 4.4.1 Genetic Algorithm for the Weighted Average -- 4.4.2 Training the Artificial Neural Network with Back-Propagation -- 4.5 Implementation -- 4.5.1 Instruction Mode -- 4.5.2 Evaluation Mode -- 4.5.3 Computer Training Mode -- 4.5.4 Training Data Collection Sub-mode. , 4.5.5 Machine Learning Sub-mode -- 4.6 Training-Testing Process and Results -- 4.6.1 Training Data -- 4.6.2 Training and Testing on Various Data Set Groups -- 4.6.3 Genetic Algorithm Results -- 4.6.4 Artificial Neural Network Training Results -- 4.7 Conclusions -- References -- 5 Exploiting Semi-supervised Learning in the Education Field: A Critical Survey -- 5.1 Introduction -- 5.2 Semi-supervised Learning -- 5.3 Literature Review -- 5.3.1 Performance Prediction -- 5.3.2 Dropout Prediction -- 5.3.3 Grade Level Prediction -- 5.3.4 Grade Point Value Prediction -- 5.3.5 Other Studies -- 5.3.6 Discussion -- 5.4 The Potential of SSL in the Education Field -- 5.5 Conclusions -- References -- Part III Machine Learning/Deep Learning in Security -- 6 Survey of Machine Learning Approaches in Radiation Data Analytics Pertained to Nuclear Security -- 6.1 Introduction -- 6.2 Machine Learning Methodologies in Nuclear Security -- 6.2.1 Nuclear Signature Identification -- 6.2.2 Background Radiation Estimation -- 6.2.3 Radiation Sensor Placement -- 6.2.4 Source Localization -- 6.2.5 Anomaly Detection -- 6.3 Conclusion -- References -- 7 AI for Cybersecurity: ML-Based Techniques for Intrusion Detection Systems -- 7.1 Introduction -- 7.1.1 Why Does AI Pose Great Importance for Cybersecurity? -- 7.1.2 Contribution -- 7.2 ML-Based Models for Cybersecurity -- 7.2.1 K-Means -- 7.2.2 Autoencoder (AE) -- 7.2.3 Generative Adversarial Network (GAN) -- 7.2.4 Self Organizing Map -- 7.2.5 K-Nearest Neighbors (k-NN) -- 7.2.6 Bayesian Network -- 7.2.7 Decision Tree -- 7.2.8 Fuzzy Logic (Fuzzy Set Theory) -- 7.2.9 Multilayer Perceptron (MLP) -- 7.2.10 Support Vector Machine (SVM) -- 7.2.11 Ensemble Methods -- 7.2.12 Evolutionary Algorithms -- 7.2.13 Convolutional Neural Networks (CNN) -- 7.2.14 Recurrent Neural Network (RNN) -- 7.2.15 Long Short Term Memory (LSTM). , 7.2.16 Restricted Boltzmann Machine (RBM) -- 7.2.17 Deep Belief Network (DBN) -- 7.2.18 Reinforcement Learning (RL) -- 7.3 Open Topics and Potential Directions -- 7.3.1 Novel Feature Representations -- 7.3.2 Unsupervised Learning Based Detection Systems -- References -- Part IV Machine Learning/Deep Learning in Time Series Forecasting -- 8 A Comparison of Contemporary Methods on Univariate Time Series Forecasting -- 8.1 Introduction -- 8.2 Related Work -- 8.3 Theoretical Background -- 8.3.1 ARIMA -- 8.3.2 Prophet -- 8.3.3 The Holt-Winters Seasonal Models -- 8.3.4 N-BEATS: Neural Basis Expansion Analysis -- 8.3.5 DeepAR -- 8.3.6 Trigonometric BATS -- 8.4 Experiments and Results -- 8.4.1 Datasets -- 8.4.2 Algorithms -- 8.4.3 Evaluation -- 8.4.4 Results -- 8.5 Conclusions -- References -- 9 Application of Deep Learning in Recurrence Plots for Multivariate Nonlinear Time Series Forecasting -- 9.1 Introduction -- 9.2 Related Work -- 9.2.1 Background on Recurrence Plots -- 9.2.2 Time Series Imaging and Convolutional Neural Networks -- 9.3 Time Series Nonlinearity -- 9.4 Time Series Imaging -- 9.4.1 Dimensionality Reduction -- 9.4.2 Optimal Parameters -- 9.5 Convolutional Neural Networks -- 9.6 Model Pipeline and Architecture -- 9.6.1 Architecture -- 9.7 Experimental Setup -- 9.8 Results -- 9.9 Conclusion -- References -- Part V Machine Learning in Video Coding and Information Extraction -- 10 A Formal and Statistical AI Tool for Complex Human Activity Recognition -- 10.1 Introduction -- 10.2 The Hybrid Framework-Formal Languages -- 10.3 Formal Tool and Statistical Pipeline Architecture -- 10.4 DATA Pipeline -- 10.5 Tools for Implementation -- 10.6 Experimentation with Datasets to Identify the Ideal Model -- 10.6.1 KINISIS-Single Human Activity Recognition Modeling -- 10.6.2 DRASIS-Change of Human Activity Recognition Modeling -- 10.7 Conclusions. , References -- 11 A CU Depth Prediction Model Based on Pre-trained Convolutional Neural Network for HEVC Intra Encoding Complexity Reduction -- 11.1 Introduction -- 11.2 H.265 High Efficiency Video Coding -- 11.2.1 Coding Tree Unit Partition -- 11.2.2 Rate Distortion Optimization -- 11.2.3 CU Partition and Image Texture Features -- 11.3 Proposed Methodology -- 11.3.1 The Hierarchical Classifier -- 11.3.2 The Methodology of Transfer Learning -- 11.3.3 Structure of Convolutional Neural Network -- 11.3.4 Dataset Construction -- 11.4 Experiments and Results -- 11.5 Conclusion -- References.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    Keywords: Machine learning. ; Artificial intelligence. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (429 pages)
    Edition: 1st ed.
    ISBN: 9783030497248
    Series Statement: Learning and Analytics in Intelligent Systems Series ; v.18
    Language: English
    Note: Intro -- Foreword -- Preface -- Contents -- 1 Machine Learning Paradigms: Introduction to Deep Learning-Based Technological Applications -- 1.1 Editorial Note -- References -- Part IDeep Learning in Sensing -- 2 Vision to Language: Methods, Metrics and Datasets -- 2.1 Introduction -- 2.2 Challenges in Image Captioning -- 2.2.1 Understanding and Predicting `Importance' in Images -- 2.2.2 Visual Correctness of Words -- 2.2.3 Automatic Evaluation Metrics -- 2.2.4 Image Specificity -- 2.2.5 Natural-Sounding Descriptions -- 2.3 Image Captioning Models and Their Taxonomy -- 2.3.1 Example Lookup-Based Models -- 2.3.2 Generation-based Models -- 2.4 Assessment of Image Captioning Models -- 2.4.1 Human Evaluation -- 2.4.2 Automatic Evaluation Metrics -- 2.4.3 Distraction Task(s) Based Methods -- 2.5 Datasets for Image Captioning -- 2.5.1 Generic Captioning Datasets -- 2.5.2 Stylised Captioning Datasets -- 2.5.3 Domain Specific Captioning Datasets -- 2.6 Applications of Visual Captioning -- 2.6.1 Medical Image Captioning -- 2.6.2 Life-Logging -- 2.6.3 Commentary for Sports' Videos -- 2.6.4 Captioning for Newspapers -- 2.6.5 Captioning for Assistive Technology -- 2.6.6 Other Applications -- 2.7 Extensions of Image Captioning to Other Vision-to-Language Tasks -- 2.7.1 Visual Question Answering -- 2.7.2 Visual Storytelling -- 2.7.3 Video Captioning -- 2.7.4 Visual Dialogue -- 2.7.5 Visual Grounding -- 2.8 Conclusion and Future Works -- References -- 3 Deep Learning Techniques for Geospatial Data Analysis -- 3.1 Introduction -- 3.2 Deep Learning: A Brief Overview -- 3.2.1 Deep Learning Architectures -- 3.2.2 Deep Neural Networks -- 3.2.3 Convolutional Neural Network (CNN) -- 3.2.4 Recurrent Neural Networks (RNN) -- 3.2.5 Auto-Encoders (AE) -- 3.3 Geospatial Analysis: A Data Science Perspective -- 3.3.1 Enabling Technologies for Geospatial Data Collection. , 3.3.2 Geospatial Data Models -- 3.3.3 Geospatial Data Management -- 3.4 Deep Learning for Remotely Sensed Data Analytics -- 3.4.1 Data Pre-processing -- 3.4.2 Feature Engineering -- 3.4.3 Geospatial Object Detection -- 3.4.4 Classification Tasks in Geospatial Analysis -- 3.5 Deep Learning for GPS Data Analytics -- 3.6 Deep Learning for RFID Data Analytics -- 3.7 Conclusion -- References -- 4 Deep Learning Approaches in Food Recognition -- 4.1 Introduction -- 4.2 Background -- 4.2.1 Popular Deep Learning Frameworks -- 4.3 Deep Learning Methods for Food Recognition -- 4.3.1 Food Image Datasets -- 4.3.2 Approach #1: New Architecture Development -- 4.3.3 Approach #2: Transfer Learning and Fine-Tuning -- 4.3.4 Approach #3: Deep Learning Platforms -- 4.4 Comparative Study -- 4.4.1 New Architecture Against Pre-trained Models -- 4.4.2 Deep Learning Platforms Against Each Other -- 4.5 Conclusions -- References -- Part IIDeep Learning in Social Media and IOT -- 5 Deep Learning for Twitter Sentiment Analysis: The Effect of Pre-trained Word Embedding -- 5.1 Introduction -- 5.2 Related Work -- 5.3 Evaluation Procedure -- 5.3.1 Datasets -- 5.3.2 Data Preprocessing -- 5.3.3 Pre-trained Word Embeddings -- 5.3.4 Deep Learning -- 5.4 Comparative Analysis and Discussion -- 5.5 Conclusion and Future Work -- References -- 6 A Good Defense Is a Strong DNN: Defending the IoT with Deep Neural Networks -- 6.1 Introduction -- 6.2 State of the Art in IoT Cyber Security -- 6.3 A Cause for Concern: IoT Cyber Security -- 6.3.1 Introduction to IoT Cyber Security -- 6.3.2 IoT Malware -- 6.4 Background of Machine Learning -- 6.4.1 Support Vector Machine (SVM) -- 6.4.2 Random Forest -- 6.4.3 Deep Neural Network (DNN) -- 6.5 Experiment -- 6.5.1 Training and Test Data -- 6.5.2 Baselines of the Machine Learning Models -- 6.6 Results and Discussion -- 6.6.1 Results -- 6.6.2 Discussion. , 6.7 Conclusion -- References -- Part IIIDeep Learning in the Medical Field -- 7 Survey on Deep Learning Techniques for Medical Imaging Application Area -- 7.1 Introduction -- 7.2 From Machine Learning to Deep Learning -- 7.3 Learning Algorithm -- 7.4 ANN -- 7.4.1 Activation Function in ANN -- 7.4.2 Training Process -- 7.5 DNN -- 7.5.1 Supervised Deep Learning -- 7.5.2 Unsupervised Learning -- 7.6 MRI Preprocessing -- 7.6.1 Inter-series Sorting -- 7.6.2 Registration -- 7.6.3 Normalization -- 7.6.4 Correction of the Bias Field -- 7.7 Deep Learning Applications in Medical Imagining -- 7.7.1 Classification -- 7.7.2 Detection -- 7.7.3 Segmentation -- 7.7.4 Registration -- 7.8 Conclusion -- References -- 8 Deep Learning Methods in Electroencephalography -- 8.1 Introduction -- 8.1.1 A Short Introduction to EEG -- 8.2 Literature Review -- 8.2.1 Public Datasets -- 8.2.2 Preprocessing Methods -- 8.2.3 Input Representation -- 8.2.4 Data Augmentation -- 8.2.5 Architectures -- 8.2.6 Features Visualization -- 8.2.7 Applications -- 8.3 Practical Example-Eriksen Flanker Task -- 8.3.1 Materials -- 8.4 Summary -- References -- Part IVDeep Learning in Systems Control -- 9 The Implementation and the Design of a Hybriddigital PI Control Strategy Based on MISO Adaptive Neural Network Fuzzy Inference System Models-A MIMO Centrifugal Chiller Case Study -- 9.1 Introduction -- 9.2 Centrifugal Chiller System Decomposition-Closed-Loop Simulations -- 9.3 MISO ARMAX and ANFIS Models of MIMO Centrifugal Chiller Plant -- 9.3.1 MISO ARMAX and ANFIS Evaporator Subsystem Models -- 9.3.2 MISO ARMAX and ANFIS Condenser Subsystem Models -- 9.4 Centrifugal Chiller PID Closed-Loop Control Strategies-Performance Analysis -- 9.5 Conclusions -- References -- 10 A Review of Deep Reinforcement Learning Algorithms and Comparative Results on Inverted Pendulum System -- 10.1 Introduction. , 10.2 Reinforcement Learning Background -- 10.2.1 Markov Decision Process -- 10.2.2 Deep-Q Learning -- 10.2.3 Double Deep-Q Learning -- 10.2.4 Double Dueling Deep-Q Learning -- 10.2.5 Reinforce -- 10.2.6 Asynchronous Deep Reinforcement Learning Methods -- 10.3 Inverted Pendulum Problem -- 10.4 Experimental Results -- 10.5 Conclusions -- References -- Part VDeep Learning in Feature Vector Processing -- 11 Stock Market Forecasting by Using Support Vector Machines -- 11.1 Introduction -- 11.2 Support Vector Machines -- 11.3 Determinants of Risk and Volatility in Stock Prices -- 11.4 Predictions of Stock Market Movements by Using SVM -- 11.4.1 Data Processing -- 11.4.2 The Proposed SVM Model -- 11.4.3 Feature Selection -- 11.5 Results and Conclusions -- References -- 12 An Experimental Exploration of Machine Deep Learning for Drone Conflict Prediction -- 12.1 Introduction -- 12.1.1 Airspace and Traffic Assumptions -- 12.1.2 Methodological Assumptions -- 12.2 A Brief Introduction to Artificial Neural Networks (ANNs) -- 12.3 Drone Test Scenarios and Traffic Samples -- 12.3.1 Experimental Design -- 12.3.2 ANN Design -- 12.3.3 Procedures -- 12.4 Results -- 12.4.1 Binary Classification Accuracy -- 12.4.2 Classification Sensitivity and Specificity -- 12.4.3 The Extreme Scenario -- 12.4.4 ROC Analysis -- 12.4.5 Summary of Results -- 12.5 Conclusions -- References -- 13 Deep Dense Neural Network for Early Prediction of Failure-Prone Students -- 13.1 Introduction -- 13.2 Literature Review -- 13.3 The Deep Dense Neural Network -- 13.4 Experimental Process and Results -- 13.5 Conclusions -- References -- Part VIEvaluation of Algorithm Performance -- 14 Non-parametric Performance Measurement with Artificial Neural Networks -- 14.1 Introduction -- 14.2 Data Envelopment Analysis -- 14.3 Artificial Neural Networks -- 14.4 Proposed Approach. , 14.4.1 Data Generation-Training and Testing Samples -- 14.4.2 ANN Architecture and Training Algorithm -- 14.5 Results -- 14.6 Conclusion -- References -- 15 A Comprehensive Survey on the Applications of Swarm Intelligence and Bio-Inspired Evolutionary Strategies -- 15.1 Introduction -- 15.2 Nature Inspired Intelligence -- 15.2.1 Swarm Intelligence -- 15.2.2 Algorithms Inspired by Organisms -- 15.3 Application Areas and Open Problems for NII -- 15.3.1 Applications of Swarm Intelligent Methods -- 15.3.2 Applications of Organisms-Inspired Algorithms -- 15.3.3 Comparison and Discussion -- 15.3.4 Are All These Algorithms Actually Needed? -- 15.4 Suggestions and Future Work -- References -- 16 Detecting Magnetic Field Levels Emitted by Tablet Computers via Clustering Algorithms -- 16.1 Introduction -- 16.2 Measurement of the Tablet Magnetic Field -- 16.2.1 Magnetic Field -- 16.2.2 Measuring Devices -- 16.2.3 TCO Standard -- 16.2.4 The Realized Experiment -- 16.2.5 A Typical Way of Working with the Tablet -- 16.3 Magnetic Field Clustering -- 16.3.1 K-Means Clustering -- 16.3.2 K-Medians Clustering -- 16.3.3 Self-Organizing Map Clustering -- 16.3.4 DBSCAN Clustering -- 16.3.5 Expectation-Maximization with Gaussian Mixture Models -- 16.3.6 Hierarchical Clustering -- 16.3.7 Fuzzy-C-Means Clustering -- 16.4 Evaluation of the Tablet User Exposure to ELF Magnetic Field -- 16.5 Results and Discussion -- 16.5.1 Measurement Results -- 16.5.2 Clustering Results -- 16.5.3 The foe Results Measurement -- 16.6 Conclusions -- References.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...