GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • English  (2)
  • 2020-2024  (1)
  • 2020-2022  (1)
  • 1
    Publication Date: 2024-05-22
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Coastal protection in the form of dike constructions has a long history at the German North Frisian coast dating back to the High Middle Ages. As the vast majority of the dikes built prior to the devastating storm surges of the Middle Ages have been irretrievably destroyed, mostly sparse remains and only a few well preserved of these medieval dikes are found along the German North Frisian coast and within the Wadden Sea. Not all details of their construction and dimensions are yet understood. In the present case study, we investigate the historical Schardeich on the island of Pellworm in the German North Sea in a noninvasive way using shear waves (SH‐waves). For the data interpretation, we applied a combination of seismic full waveform inversion and classical seismic reflection imaging to determine the interior structure of the dike and its underlying layers at the highest possible resolution. The results obtained on land are compared with dike remains found in the tidal flats. These remains show up in marine seismic sections as characteristic reflections, which probably represent a compaction layer caused by the load of the former dike. For ground truthing, we compare the seismic results with internal dike structures found in nearby excavations. The comparison highlights that FWI is a reliable tool for near‐surface archaeological prospecting. We find that SH‐wave FWI provides decimetre‐scale velocity and density models that allow, together with the seismic reflection section, to determine distinct construction phases of the dike. The investigated dike further shows a depression at base level of about 0.75 m, which is of the same order as observed for the dike base reflections in the tidal flats. Transferring these findings to the dike remains mapped in the tidal flats, we derive a height of the former dike from 2.2 to 4.4 m.〈/p〉
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Keywords: ddc:622.1592 ; archaeogeophysics ; high‐resolution seismic reflection imaging ; seismic full waveform inversion ; shear‐wave seismic
    Language: English
    Type: doc-type:article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-10-01
    Description: Villarrica Volcano (Chile) is one of the most active volcanoes in South America. Its low-frequency (≤5 Hz) seismicity consists of a continuous tremor, overlain by impulsive transient events of higher amplitude in 60-s intervals. This signal was recorded in March 2012 by an extensive local network, comprising 75 stations and including 6 subarrays. It allowed us to apply and compare three techniques to locate the origin of the seismicity: intersection of propagation directions determined by array analysis, mapping amplitudes, and modeling of amplitude decay. All methods yield almost identical, temporally stable, epicenters inside the summit crater, which confirms earlier attributions of the seismicity to volcanic activity inside the conduit. The discrete transients and the interevent tremor share the same source location. From the dominance of surface waves and the obvious scattering, we infer a source near the surface. For two arrays at the northern and western flank, a dispersion relation was derived, which allowed for the determination of S wave velocity-depth functions. At both locations, the velocity structure can be modeled by three layers with interfaces at 100 and 400m depths. The velocities (300 to 3,000 m/s) correspond to pyroclastic material at different states of consolidation. The modeling of the amplitude decay reveals a quality factor around 50.
    Keywords: 551.22 ; volcano seismology ; beamforming ; amplitude decay ; source location ; scattering ; S wave velocity structure
    Language: English
    Type: map
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...