GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 372, No. 6546 ( 2021-06-04), p. 1097-1101
    Abstract: Water-stable isotopes in polar ice cores are a widely used temperature proxy in paleoclimate reconstruction, yet calibration remains challenging in East Antarctica. Here, we reconstruct the magnitude and spatial pattern of Last Glacial Maximum surface cooling in Antarctica using borehole thermometry and firn properties in seven ice cores. West Antarctic sites cooled ~10°C relative to the preindustrial period. East Antarctic sites show a range from ~4° to ~7°C cooling, which is consistent with the results of global climate models when the effects of topographic changes indicated with ice core air-content data are included, but less than those indicated with the use of water-stable isotopes calibrated against modern spatial gradients. An altered Antarctic temperature inversion during the glacial reconciles our estimates with water-isotope observations.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2021
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Climate of the Past, Copernicus GmbH, Vol. 17, No. 5 ( 2021-09-28), p. 1919-1936
    Abstract: Abstract. Glacial periods undergo frequent climate shifts between warm interstadials and cold stadials on a millennial timescale. Recent studies show that the duration of these climate modes varies with the background climate; a colder background climate and lower CO2 generally result in a shorter interstadial and a longer stadial through its impact on the Atlantic Meridional Overturning Circulation (AMOC). However, the duration of stadials is shorter during Marine Isotope Stage 3 (MIS3) than during MIS5, despite the colder climate in MIS3, suggesting potential control from other climate factors on the duration of stadials. In this study, we investigate the role of glacial ice sheets. For this purpose, freshwater hosing experiments are conducted with an atmosphere–ocean general circulation model under MIS5a and MIS3 boundary conditions, as well as MIS3 boundary conditions with MIS5a ice sheets. The impact of ice sheet differences on the duration of the stadials is evaluated by comparing recovery times of the AMOC after the freshwater forcing is stopped. These experiments show a slightly shorter recovery time of the AMOC during MIS3 compared with MIS5a, which is consistent with ice core data. We find that larger glacial ice sheets in MIS3 shorten the recovery time. Sensitivity experiments show that stronger surface winds over the North Atlantic shorten the recovery time by increasing the surface salinity and decreasing the sea ice amount in the deepwater formation region, which sets favorable conditions for oceanic convection. In contrast, we also find that surface cooling by larger ice sheets tends to increase the recovery time of the AMOC by increasing the sea ice thickness over the deepwater formation region. Thus, this study suggests that the larger ice sheet during MIS3 compared with MIS5a could have contributed to the shortening of stadials in MIS3, despite the climate being colder than that of MIS5a, because surface wind plays a larger role.
    Type of Medium: Online Resource
    ISSN: 1814-9332
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2021
    detail.hit.zdb_id: 2217985-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Climate of the Past, Copernicus GmbH, Vol. 17, No. 1 ( 2021-01-06), p. 21-36
    Abstract: Abstract. We carry out three sets of last interglacial (LIG) experiments, named lig127k, and of pre-industrial experiments, named piControl, both as part of PMIP4/CMIP6 using three versions of the MIROC model: MIROC4m, MIROC4m-LPJ, and MIROC-ES2L. The results are compared with reconstructions from climate proxy data. All models show summer warming over northern high-latitude land, reflecting the differences between the distributions of the LIG and present-day solar irradiance. Globally averaged temperature changes are −0.94 K (MIROC4m), −0.39 K (MIROC4m-LPJ), and −0.43 K (MIROC-ES2L). Only MIROC4m-LPJ, which includes dynamical vegetation feedback from the change in vegetation distribution, shows annual mean warming signals at northern high latitudes, as indicated by proxy data. In contrast, the latest Earth system model (ESM) of MIROC, MIROC-ES2L, which considers only a partial vegetation effect through the leaf area index, shows no change or even annual cooling over large parts of the Northern Hemisphere. Results from the series of experiments show that the inclusion of full vegetation feedback is necessary for the reproduction of the strong annual warming over land at northern high latitudes. The LIG experimental results show that the warming predicted by models is still underestimated, even with dynamical vegetation, compared to reconstructions from proxy data, suggesting that further investigation and improvement to the climate feedback mechanism are needed.
    Type of Medium: Online Resource
    ISSN: 1814-9332
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2021
    detail.hit.zdb_id: 2217985-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Meteorological Society of Japan ; 2013
    In:  SOLA Vol. 9, No. 0 ( 2013), p. 115-119
    In: SOLA, Meteorological Society of Japan, Vol. 9, No. 0 ( 2013), p. 115-119
    Type of Medium: Online Resource
    ISSN: 1349-6476
    Language: English
    Publisher: Meteorological Society of Japan
    Publication Date: 2013
    detail.hit.zdb_id: 2222926-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2018
    In:  Climate Dynamics Vol. 50, No. 7-8 ( 2018-4), p. 2881-2903
    In: Climate Dynamics, Springer Science and Business Media LLC, Vol. 50, No. 7-8 ( 2018-4), p. 2881-2903
    Type of Medium: Online Resource
    ISSN: 0930-7575 , 1432-0894
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2018
    detail.hit.zdb_id: 382992-3
    detail.hit.zdb_id: 1471747-5
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2022
    In:  Geophysical Research Letters Vol. 49, No. 6 ( 2022-03-28)
    In: Geophysical Research Letters, American Geophysical Union (AGU), Vol. 49, No. 6 ( 2022-03-28)
    Abstract: Dansgaard‐Oeschger‐like oscillations of millennial‐scale are simulated with a coupled climate model, MIROC4m, under glacial conditions The period of the simulated oscillations shortens as the climatic precession shifts to stronger boreal seasonality The period of the oscillations can be influenced by the seasonal sea ice change and the subsurface temperature change in the North Atlantic
    Type of Medium: Online Resource
    ISSN: 0094-8276 , 1944-8007
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2022
    detail.hit.zdb_id: 2021599-X
    detail.hit.zdb_id: 7403-2
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Copernicus GmbH ; 2021
    In:  Climate of the Past Vol. 17, No. 1 ( 2021-01-12), p. 95-110
    In: Climate of the Past, Copernicus GmbH, Vol. 17, No. 1 ( 2021-01-12), p. 95-110
    Abstract: Abstract. This study explores the effect of southward expansion of Northern Hemisphere (American) mid-glacial ice sheets on the global climate and the Atlantic Meridional Overturning Circulation (AMOC) as well as the processes by which the ice sheets modify the AMOC. For this purpose, simulations of Marine Isotope Stage (MIS) 3 (36 ka) and 5a (80 ka) are performed with an atmosphere–ocean general circulation model. In the MIS3 and MIS5a simulations, the global average temperature decreases by 5.0 and 2.2 ∘C, respectively, compared with the preindustrial climate simulation. The AMOC weakens by 3 % in MIS3, whereas it strengthens by 16 % in MIS5a, both of which are consistent with an estimate based on 231Pa ∕ 230Th. Sensitivity experiments extracting the effect of the southward expansion of glacial ice sheets from MIS5a to MIS3 show a global cooling of 1.1 ∘C, contributing to about 40 % of the total surface cooling from MIS5a to MIS3. These experiments also demonstrate that the ice sheet expansion leads to a surface cooling of 2 ∘C over the Southern Ocean as a result of colder North Atlantic Deep Water. We find that the southward expansion of the mid-glacial ice sheet exerts a small impact on the AMOC. Partially coupled experiments reveal that the global surface cooling by the glacial ice sheet tends to reduce the AMOC by increasing the sea ice at both poles and, hence, compensates for the strengthening effect of the enhanced surface wind over the North Atlantic. Our results show that the total effect of glacial ice sheets on the AMOC is determined by two competing effects: surface wind and surface cooling. The relative strength of surface wind and surface cooling effects depends on the ice sheet configuration, and the strength of the surface cooling can be comparable to that of surface wind when changes in the extent of ice sheet are prominent.
    Type of Medium: Online Resource
    ISSN: 1814-9332
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2021
    detail.hit.zdb_id: 2217985-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Climate of the Past, Copernicus GmbH, Vol. 17, No. 1 ( 2021-01-11), p. 37-62
    Abstract: Abstract. The Last Interglacial period (LIG) is a period with increased summer insolation at high northern latitudes, which results in strong changes in the terrestrial and marine cryosphere. Understanding the mechanisms for this response via climate modelling and comparing the models' representation of climate reconstructions is one of the objectives set up by the Paleoclimate Modelling Intercomparison Project for its contribution to the sixth phase of the Coupled Model Intercomparison Project. Here we analyse the results from 16 climate models in terms of Arctic sea ice. The multi-model mean reduction in minimum sea ice area from the pre industrial period (PI) to the LIG reaches 50 % (multi-model mean LIG area is 3.20×106 km2, compared to 6.46×106 km2 for the PI). On the other hand, there is little change for the maximum sea ice area (which is 15–16×106 km2 for both the PI and the LIG. To evaluate the model results we synthesise LIG sea ice data from marine cores collected in the Arctic Ocean, Nordic Seas and northern North Atlantic. The reconstructions for the northern North Atlantic show year-round ice-free conditions, and most models yield results in agreement with these reconstructions. Model–data disagreement appear for the sites in the Nordic Seas close to Greenland and at the edge of the Arctic Ocean. The northernmost site with good chronology, for which a sea ice concentration larger than 75 % is reconstructed even in summer, discriminates those models which simulate too little sea ice. However, the remaining models appear to simulate too much sea ice over the two sites south of the northernmost one, for which the reconstructed sea ice cover is seasonal. Hence models either underestimate or overestimate sea ice cover for the LIG, and their bias does not appear to be related to their bias for the pre-industrial period. Drivers for the inter-model differences are different phasing of the up and down short-wave anomalies over the Arctic Ocean, which are associated with differences in model albedo; possible cloud property differences, in terms of optical depth; and LIG ocean circulation changes which occur for some, but not all, LIG simulations. Finally, we note that inter-comparisons between the LIG simulations and simulations for future climate with moderate (1 % yr−1) CO2 increase show a relationship between LIG sea ice and sea ice simulated under CO2 increase around the years of doubling CO2. The LIG may therefore yield insight into likely 21st century Arctic sea ice changes using these LIG simulations.
    Type of Medium: Online Resource
    ISSN: 1814-9332
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2021
    detail.hit.zdb_id: 2217985-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2022
    In:  Paleoceanography and Paleoclimatology Vol. 37, No. 10 ( 2022-10)
    In: Paleoceanography and Paleoclimatology, American Geophysical Union (AGU), Vol. 37, No. 10 ( 2022-10)
    Abstract: New set of long‐run Last Glacial Maximum general circulation model experiments showing millennial‐scale variability Detailed description of the impact of ice sheet reconstruction‐derived meltwater distributions on abrupt climate changes Introduction for future studies of the underlying physical processes of abrupt climate changes
    Type of Medium: Online Resource
    ISSN: 2572-4517 , 2572-4525
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2022
    detail.hit.zdb_id: 2916554-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2021
    In:  Communications Earth & Environment Vol. 2, No. 1 ( 2021-08-20)
    In: Communications Earth & Environment, Springer Science and Business Media LLC, Vol. 2, No. 1 ( 2021-08-20)
    Abstract: Abrupt climate warming events, known as Dansgaard-Oeschger events, occurred frequently during glacial periods, and are thought to be linked to changes in the Atlantic meridional overturning circulation. However, the mechanism responsible is not fully understood. Here, we present numerical simulations with a sea-ice coupled ocean general circulation model that systematically investigate the thermal threshold where deep water formation, and hence the overturning circulation, shift abruptly when the sea surface cools or warms sufficiently. Specifically, in our simulations where the magnitude of the sea surface cooling is changed separately or simultaneously in the Northern and Southern Hemispheres, a prominent threshold is identified when the Southern Hemisphere is slightly warmer than during glacial maxima. Abrupt mode changes of the Atlantic Meridional Overturning Circulation, like those during Dansgaard-Oeschger events, occur past a threshold in a transient simulation where the Southern Hemisphere is gradually warmed. We propose that the Southern Ocean plays a role in controlling the thermal threshold of the Atlantic Meridional Overturning Circulation in a glacial climate and that Southern Ocean warming may have triggered Dansgaard-Oeschger events which occurred with long interval.
    Type of Medium: Online Resource
    ISSN: 2662-4435
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2021
    detail.hit.zdb_id: 3037243-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...