GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Blood, American Society of Hematology, Vol. 122, No. 21 ( 2013-11-15), p. 2383-2383
    Abstract: Oral anticoagulants are the mainstay of treatment for prothrombotic disorders. The emerging oral factor Xa (FXa) inhibitors, which include rivaroxaban and apixaban, have been shown to be highly effective anticoagulants in several clinical scenarios, including venous thromboembolism and non-valvular atrial fibrillation. Compared to warfarin, direct FXa inhibitors have less variable pharmacokinetics, may not require routine monitoring of coagulation parameters, and have comparable to a somewhat lower bleeding risk. Despite these advantages, no approved strategy has been developed to reverse the anticoagulant effects of these drugs in the event of life-threatening bleeding or emergent need for surgery. This represents an urgent unmet clinical need. Our group has recently developed a panel of FXa mutants that are more zymogen-like than wild-type (wt)-FXa. These “zymogen-like” FXa variants have lower activity in in vitro assays compared to wt-FXa due to impaired active site maturation. Furthermore, the variants have longer plasma half-lives ( 〉 30 minutes) in vitro compared to wt-FXa (1-2 minutes) due to diminished reactivity with antithrombin III (ATIII) and tissue factor pathway inhibitor (TFPI). Remarkably however, binding to FVa rescues the activity of these zymogen-like FXa variants and as a result they are highly effective procoagulants in vivo in the setting of hemophilia (Nat. Biotech; 2011, 29:1028-33). We hypothesized that these variants could also be effective procoagulants to overcome the effects of direct FXa inhibitors. Furthermore, since direct FXa inhibitors bind the FXa active site, we expect them to compete with ATIII and TFPI for FXa binding and prolong their half-lives. We tested both of these hypotheses in in vitro coagulation studies and in vivo hemostasis models. Rivaroxaban dose-dependently inhibited thrombin generation in thrombin generation assays (TGA) when added to normal human plasma. Specifically, 500 nM rivaroxaban, the expected therapeutic steady-state plasma concentration, decreased peak thrombin generation to ∼10% of normal, and addition of 3 nM of the FXa zymogen-like variant FXaI16L restored peak thrombin generation to 105% of normal. Higher concentrations of rivaroxaban (2.5 µM) completely abrogated thrombin generation in this assay, but 10 nM FXaI16L restored thrombin generation to 72% of normal under these conditions. We compared these data to results obtained with other proposed reversal strategies. Gla-domainless, catalytically inactive FXa (GD-FXaS195A), which has been shown to reverse the effects of rivaroxaban by scavenging the inhibitor, restored thrombin generation in the presence of 500 nM rivaroxaban, but required high concentrations (1 µM; 〉 300-fold greater than FXaI16L) to be effective. In addition, activated prothrombin complex concentrates (FEIBA), which have been shown to have some ex vivo efficacy, were ineffective under our assay conditions. In tail-clip hemostasis studies in mice, rivaroxaban dose-dependently increased blood loss, with 50 mg/kg rivaroxaban resulting in 217% of normal blood loss. Addition of FXaI16L (200 mg/kg) reduced rivaroxaban-induced blood loss to 141% of normal. To examine the effect of rivaroxaban on the half-life of FXa, we pre-incubated FXaI16L or wt-FXa with or without rivaroxaban in normal human plasma and then performed TGA experiments after various incubation times. When wt-FXa or FXaI16L were pre-incubated in plasma in the absence of rivaroxaban, their half-lives were 4.6 minutes and 1.37 hours, respectively. Remarkably, when wt-FXa or FXaI16L were incubated in plasma in the presence of 500 nM rivaroxaban, their respective half-lives were prolonged to 9.4 hours (123-fold increase) and 18.1 hours (13.2-fold increase). These results suggest that a zymogen-like FXa variant, FXaI16L, can reverse the effects of rivaroxaban in vitro and in vivo. Furthermore, FXaI16L is a bypassing agent that only requires catalytic amounts of protein, in contrast to scavengers or “true” antidotes like GD-FXaS195A that require stoichiometric concentrations. This indicates that much lower quantities of FXaI16L may be effective in vivo. We also showed that rivaroxaban dramatically prolongs the half-life of FXa in plasma, possibly by competing with ATIII and TFPI for FXa binding. This work provides a starting point for the development of a long half-life reversal strategy for the emerging FXa inhibitors. Disclosures: Patel-Hett: Pfizer: Employment. Jasuja:Pfizer: Employment. Fruebis:Pfizer: Employment. Pittman:Pfizer: Employment. Camire:Pfizer: Consultancy, Patents & Royalties, Research Funding; Alnylam: Consultancy.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2013
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Society of Hematology ; 2014
    In:  Blood Vol. 124, No. 21 ( 2014-12-06), p. 1476-1476
    In: Blood, American Society of Hematology, Vol. 124, No. 21 ( 2014-12-06), p. 1476-1476
    Abstract: In many clinical indications, effective control of bleeding is needed. Factor Xa (FXa) is a vitamin K-dependent trypsin-like serine protease that interacts with non-enzymatic coagulation factor Va (FVa) on negatively charged membrane surfaces to generate thrombin during hemostasis. Based on its central role in the coagulation cascade at the intersection of both intrinsic and extrinsic pathways, direct administration of FXa is an attractive approach to restoring hemostasis in bleeding disorders by leading to direct thrombin generation and fibrin formation. However, the short plasma half-life of the activated FXa protease renders it inadequate as a therapeutic for acute bleeding. Here, we investigate FXaI16L,a recently described variant of coagulation FXa engineered to overcome these limitations. The FXaI16L variant has an isoleucine (I) to leucine (L) substitution at amino acid 16 (based on chymotrypsin numbering). FXaI16L exhibits zymogen-like properties with both reduced activity and sensitivity toward plasma inhibitors. In the presence of its cofactor, FVa, FXaI16L activity is restored. We assessed the hemostatic activity of FXaI16L in an acute tail bleeding model that results in severe bleeding in normal mice. Ex vivo pharmacodynamic parameters in plasma and whole blood were also measured. FXaI16L was administrated intravenously to normal male C57BL/6J mice at doses of 1, 10, 25, 50, 100, or 200 μg/kg. Control mice received vehicle only. Two minutes post administration, a 3 mm tail transection was made. Tails were immediately immersed in tubes containing pre-warmed phosphate buffered saline for blood collection over a ten minute period. Bleeding times were recorded and volume of blood loss was determined by measurement of the hemoglobin content in the collected blood. Following administration of FXaI16L, a dose dependent reduction in bleeding was observed. Mice dosed with FXaI16Lshowed a decrease in blood loss of 12% (1 μg/kg), 16.6% (10 μg/kg), 26.7% (25 μg/kg), 45.3% (50 μg/kg), 62.9% (100 μg/kg), and 69.6% (200 μg/kg) compared to vehicle-dosed mice. The estimated ED50 was 46 μg/kg. Following infusion of FXaI16L (25 μg/kg) or vehicle into normal male CD-1 mice, we measured the ex vivo activity in plasma using an activated partial thromboplastin time (aPTT) clotting assay and a thrombin generation assay (TGA). Plasma collected from FXaI16L-dosed animals at 2 minutes post-injection displayed a 67% reduction in aPTT compared to vehicle-dosed mice. Dosing of FXaI16L at 25 μg/kg also enhanced thrombin generation, as reflected by a shortened lag phase, increased peak thrombin, increased endogenous thrombin potential and higher velocity index compared to vehicle treated mice. We also measured thromboelastography (TEG) parameters of whole blood collected from mice infused with FXaI16L. At a 10 μg/kg intravenous dose of FXaI16L, the TEG R-value and K-value measures of clotting time decreased, while TEG alpha angle and maximum amplitude increased compared to vehicle treated mice. We conclude that administration of FXaI16L in normal mice enhances hemostasis, decreasing bleeding in an injury model. Together, these studies suggest that FXaI16L may provide a new and unique way to achieve hemostasis in clinical situations of uncontrolled bleeding. Disclosures Reema: Pfizer: Employment. Patel-Hett:Pfizer: Employment. Camire:Pfizer: Consultancy, Patents & Royalties, Research Funding. Fruebis:Pfizer: Employment. Pittman:Pfizer: Employment.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2014
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Society of Hematology ; 2014
    In:  Blood Vol. 124, No. 21 ( 2014-12-06), p. 2694-2694
    In: Blood, American Society of Hematology, Vol. 124, No. 21 ( 2014-12-06), p. 2694-2694
    Abstract: Vaso-occlusion is the major cause of morbidity and mortality in sickle cell disease (SCD). It is a complex multistep process initiated by the adhesion of fragile red cells and leucocytes, primarily neutrophils, to the hypoxic and inflamed endothelium. Attachment of large and rigid neutrophils to the endothelium, particularly in the microcirculation induces vaso-occlusive crisis by activating neutrophils and forming multicellular aggregates with erythrocytes and platelets. Dysregulated nitric oxide (NO) homeostasis contributes to vascular dysfunction in SCD. Hydroxyurea is the standard of care and the only approved therapy for SCD. Hydroxyurea has been shown to exhibit NO donor properties and may act to increase g-globin expression via the second messenger cGMP. PF-04447943 (PDE9i) is a selective inhibitor of the cGMP specific phosphodiesterase-9A (PDE-9A) enzyme (IC50 12nM) being developed for the treatment of SCD. Here, we study the combined effects of this PDE-9A inhibitor and hydroxyurea in a mouse model of acute vaso-occlusion. The effect of PF-04447943 was assessed in the presence and absence of hydroxyurea in vivo using two models, TNF-α treated normal wild-type mice and the Townes model of SCD. C57BL/6J or Townes SCD mice were randomized to treatment with saline or PDE-9 inhibitor alone or in combination with hydroxurea. In wild-type mice, treatment was administered in a prophylactic setting prior to the TNF-α inflammatory challenge or in an acute setting post-TNF-α (0.5 ug/mouse). TNF-α induces a well described acute inflammatory response in the microcirculation associated with neutrophil adhesion to the endothelium and formation of multicellular aggregates. Alexa-488 labeled Ly-6G neutrophil antibody and Dylight-649 labeled CD42c platelet antibody was injected to quantify neutrophils adhered to endothelium and neutrophil-platelet aggregates. Mouse cremaster microvasculature was observed by intravital microscopy. TNF–α treatment of C57BL/6J mice increased the number of adherent neutrophils and neutrophil-platelet aggregates, and decreased the number of rolling neutrophils compared to vehicle treated mice. Treatment with PDE9i or hydroxyurea alone in TNF-α challenged mice had no significant effect on neutrophil adhesion. Co-administration of 100 mg/kg HU in combination with 10 mg/kg PDE9i prior to TNF-α challenge led to a 69% reduction in neutrophils adhered to the endothelium and 89% reduction in neutrophil-platelet aggregates compared to TNF–α treated mice alone. Neutrophil adhesion was also reduced 59% in mice receiving 50 mg/kg hydroxurea and 1 mg/kg PDE9i. There was a significant increase in the neutrophil rolling number and velocity after co-administration of PDE9i and HU in TNF-α challenged mice. However, mice receiving PDE9i and hydroxurea after theTNF-α challenge did not show significant changes in neutrophil adhesion or aggregates. Plasma levels of sP-Selectin, sE-Selectin, sVCAM-1 and sICAM-1 decreased when animals were given a prophylactic combination treatment with PDE9i and hydroxyurea. The Townes sickle cell disease mice exhibit an acute inflammatory response upon surgical exposition of the cremaster muscle and show increased number of adherent neutrophils and large neutrophil-platelet aggregates. Prophylactic treatment of these sickle mice with combination of PDE9i and hydroxyurea also showed a 63% reduction in neutrophil adhesion and a 75% reduction in cell aggregates, leading to reduced vaso-occlusion. In summary, inhibition of PDE9 in mouse models of SCD had beneficial effects in the prophylactic reduction of crisis. Co-administration of PDE9 inhibitor with hydroxyurea, led to a significant reduction in vaso-occlusion associated with sickle cell disease in two distinct animal models of SCD. All experiments were within guidelines and were reviewed and approved by the site institutional animal care and use committee. Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2014
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    American Society of Hematology ; 2018
    In:  Blood Vol. 132, No. Supplement 1 ( 2018-11-29), p. 2460-2460
    In: Blood, American Society of Hematology, Vol. 132, No. Supplement 1 ( 2018-11-29), p. 2460-2460
    Abstract: BACKGROUND: Tissue Factor Pathway inhibitor (TFPI) is a plasma serine protease inhibitor that modulates the initiation of coagulation by directly binding and inhibiting the Tissue Factor (TF)/Factor VIIa/Factor Xa complex. TFPI is a multi-Kunitz domain protein that directly binds to and inhibits both activated Factor Xa (FXa) and FVIIa. Blocking TFPI can act as a bypass therapy by facilitating hemostasis initiated by tissue factor/FVIIa, thereby, compensating for loss of Factor VIII or Factor IX (in hemophilia A or B). PF-06741086, a fully human antibody engineered to inhibit TFPI, exhibits broad cross reactivity to TFPI from numerous species, including mouse. PF-06741086 is being developed as a potential treatment for bleeding disorders including hemophilia A and hemophilia B with and without inhibitors. aPCC (activated Prothrombin complex concentrates or FEIBA, Factor Eight Inhibitor Bypass Agent) is a bypass agent for to control bleed in Hemophilia patients with inhibitors. Since it is a plasma-derived concentrate containing various prothrombin complex coagulation factors in their enzymatic or zymogen form, it is possible that FEIBA could potentially impact the activity of PF-06741086. AIMS: Here, we directly compare the hemostatic effect of PF-06741086 alone, and in combination with aPCC in Hemophilia A mouse model using severe tail vein transection. METHODS: Male hemophilia A mice were dosed with a single intravenous dose of PF-06741086 (0.5, 1, 2 or 6 mg/kg) 30 minutes prior to a 3mm tail clip, or aPCC (50, 100 or 200 U/kg) was administered 5 minutes before the tail clip. Mice were also treated with a combined dose of 0.5 mg/kg anti-TFPI PF-06741086 and aPCC at 50, 100 or 200 U/kg. Blood was collected for 10 minutes and quantified against a standard curve of hemoglobin as volume blood loss. RESULTS: PF-06741086 demonstrated a dose dependent response in improving hemostasis in Hemophilia A mice after tail clip. PF-06741086 was able to restore hemostasis at 1 mg/kg (49%), and higher doses further improved hemostasis at 2 mg/kg (63%), and 6 mg/kg (78%). aPCC also demonstrated a dose dependent reduction in blood loss and improved hemostasis with all tested doses of 50 U/kg (25%), 100 U/kg (23%) and 200 U/kg (66%). At a dose of 0.5 mg/kg, PF-06741086 did not show any improvement in hemostasis over vehicle control. We used this dose for all combination studies with aPCC. Combined use of low dose PF-06741086 (0.5 mg/kg) and 100 U/kg aPCC shows a trend towards improvement in hemostasis compared to either drug alone. A higher dose of aPCC (200 U/kg) combined with low dose PF-06741086 (0.5 mg/kg) significantly reduces blood loss (86%) in Hemophilia A mice in tail clip model compared to saline, TFPI or aPCC alone used at the same dose of 0.5 mg/kg or 200 U/kg respectively. CONCLUSIONS: Prophylactic administration of PF-06741086 exhibits a dose response and improves hemostasis in an injury model in Hemophilia A mice. The addition of aPCC alone restores hemostasis at 200 U/kg and this effect was enhanced in combination with PF-06741086 in this mouse model. Disclosures Barakat: Pfizer: Employment. Jasuja:Pfizer: Employment. Murphy:Pfizer: Employment. Pittman:Pfizer: Employment.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2018
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Blood, American Society of Hematology, Vol. 135, No. 8 ( 2020-02-20), p. 547-557
    Abstract: Erythroferrone (ERFE) is produced by erythroblasts in response to erythropoietin (EPO) and acts in the liver to prevent hepcidin stimulation by BMP6. Hepcidin suppression allows for the mobilization of iron to the bone marrow for the production of red blood cells. Aberrantly high circulating ERFE in conditions of stress erythropoiesis, such as in patients with β-thalassemia, promotes the tissue iron accumulation that substantially contributes to morbidity in these patients. Here we developed antibodies against ERFE to prevent hepcidin suppression and to correct the iron loading phenotype in a mouse model of β-thalassemia [Hbb(th3/+) mice] and used these antibodies as tools to further characterize ERFE’s mechanism of action. We show that ERFE binds to BMP6 with nanomolar affinity and binds BMP2 and BMP4 with somewhat weaker affinities. We found that BMP6 binds the N-terminal domain of ERFE, and a polypeptide derived from the N terminus of ERFE was sufficient to cause hepcidin suppression in Huh7 hepatoma cells and in wild-type mice. Anti-ERFE antibodies targeting the N-terminal domain prevented hepcidin suppression in ERFE-treated Huh7 cells and in EPO-treated mice. Finally, we observed a decrease in splenomegaly and serum and liver iron in anti–ERFE-treated Hbb(th3/+) mice, accompanied by an increase in red blood cells and hemoglobin and a decrease in reticulocyte counts. In summary, we show that ERFE binds BMP6 directly and with high affinity, and that antibodies targeting the N-terminal domain of ERFE that prevent ERFE–BMP6 interactions constitute a potential therapeutic tool for iron loading anemias.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2020
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Blood, American Society of Hematology, Vol. 136, No. Supplement 1 ( 2020-11-5), p. 27-28
    Abstract: Sickle cell disease (SCD) is a severe genetic disorder caused by a mutation in hemoglobin (b6Glu-Val), which allows the mutant hemoglobin to assemble into long polymers when deoxygenated. Over time, these polymers build up and deform red blood cells, leading to hemolytic anemia, vaso-occlusion, and end organ damage. A number of recent therapies for SCD have focused on modulating the mutant hemoglobin directly, however, reduction or elimination of 2,3-DPG to reduce Hb S polymerization and RBC sickling has recently been proposed as a therapeutic strategy for SCD. Current clinical studies focus on activation of pyruvate kinase to reduce 2,3-DPG, however, direct targeting of the enzyme which produces 2,3-DPG; Bisphosphoglycerate Mutase (BPGM) may also be possible. In this study we evaluate the impact of elimination of 2,3-DPG on SCD pathology by complete knockout of BPGM in Townes model mice. Animals with complete knockout of BPGM (BPGM -/-) have no detectable 2,3-DPG, while animals that are heterozygous for BPGM (BPGM -/+) have 2,3-DPG levels comparable to Townes mice. Western Blot analysis confirms that BPGM -/- animals completely lack BPGM, while BPGM -/+ animals have BPGM levels that are nearly equivalent to Townes mice. As expected from the lack of 2,3-DPG, BPGM -/- animals have increased oxygen affinity, observed as a 39% decrease in p50 relative to Townes mice. Complete elimination of 2,3-DPG has significant effects on markers of hemolytic anemia in BPGM -/- mice. Mice lacking 2,3-DPG have a 60% increase in hemoglobin (3.7 g/dL), a 53% increase in red blood cell count, and a 29% increase in hematocrit relative to Townes mice. The BPGM -/- mice also have a 57% decrease in reticulocytes, and a 61% decrease in spleen weight relative to Townes animals, consistent with decreased extramedullary hematopoiesis. Consistent with the reduction in hemolysis, BPGM -/- animals had a 59% reduction in red blood cell sickling under robust hypoxic conditions. BPGM -/+ animals had hemoglobin, RBC, and hematocrit levels that were similar to Townes animals, and a similar degree of RBC sickling to Townes mice. Liver phenotype was similar across all variants, with areas of random necrosis observed in BPGM -/-, BPGM -/+ and Townes mice. Higher percentages of microcytic and/or hyperchromic RBCs were observed in BPGM -/- animals relative to BPGM -/+ or Townes animals. These results suggest that modulation of 2,3-DPG has a positive effect on RBC sickling and hemolytic anemia, which may have therapeutic benefits for SCD patients. However, the lack of improvement in organ damage suggests that modulation of 2,3-DPG alone may not be sufficient for complete elimination of SCD phenotypes, and further investigation of this therapeutic avenue may be necessary. Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2020
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Blood, American Society of Hematology, Vol. 134, No. Supplement_1 ( 2019-11-13), p. 964-964
    Abstract: Erythroferrone (Erfe) is produced by erythroblasts in response to erythropoietin (EPO) and acts in the liver to prevent hepcidin stimulation by BMP6. Hepcidin suppression allows for the mobilization of iron to the bone marrow for the production of red blood cells. Aberrantly high circulating Erfe levels in conditions of stress erythropoiesis, such as in patients with β-thalassemia, promote the tissue iron accumulation that decisively contributes to morbidity in these patients. Here we developed neutralizing antibodies against Erfe to prevent hepcidin suppression and correct the iron loading phenotype in a mouse model of β-thalassemia (Hbb Th3/+ mice) and used these antibodies as tools to further characterize Erfe's mechanism of action. We demonstrate that Erfe binds to BMP6 with low nanomolar affinity, but also binds BMP2 and BMP4 with lower affinities. We further show that BMP6 binds the N-terminal domain of ERFE. This domain in itself was sufficient to cause hepcidin suppression in Huh7 hepatoma cells and in vivo in wildtype mice. Concurrently, anti-Erfe antibodies targeting the N-terminal domain prevented hepcidin suppression in Erfe-treated Huh7 cells and in EPO-treated mice. Crystal structure of the antibodies in contact with an N-terminal peptide of Erfe demonstrated critical contacts in the Erfe N-terminal domain imparting antibody selectivity to human and murine protein. Finally, we tested these antibodies in vivo in a mouse model of thalassemia. We observed a decrease in serum and liver iron in antibody-treated Hbb Th3/+ mice. In addition, treatment with anti-Erfe antibodies increased the number of red blood cells, hemoglobin concentration and hematocrit, while decreasing the number of reticulocytes and the red cell distribution width. These changes were more pronounced when mice are treated for eight weeks. Anti-Erfe treatment caused an increase in hepatic hepcidin mRNA expression, red blood cells, hemoglobin and hematocrit, while reticulocytes levels were lower and peripheral red cell lifespan was increased. In summary, we demonstrate that antibodies targeting the N-terminal domain of Erfe constitute a potential therapeutic tool for iron-loading anemias. Disclosures Arezes: UCB: Employment. Foy:Pfizer Inc.: Employment. Benard:pfizer: Employment. Sawant:Pfizer Inc.: Employment. Tam:Pfizer Inc.: Employment. Maben:Pfizer Inc.: Employment. LaVallie:Pfizer Inc.: Employment. Cunningham:Pfizer Inc.: Employment. Lambert:Pfizer Inc.: Employment. Pittman:Pfizer Inc.: Employment. Murphy:Pfizer Inc.: Employment. Draper:Pfizer: Research Funding. Jasuja:Pfizer Inc.: Employment. Drakesmith:Pfizer: Consultancy, Research Funding; Kymab: Other: Scientific Advistory; La Jolla Pharmaceutical: Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2019
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    American Society of Hematology ; 2018
    In:  Blood Vol. 132, No. Supplement 1 ( 2018-11-29), p. 1049-1049
    In: Blood, American Society of Hematology, Vol. 132, No. Supplement 1 ( 2018-11-29), p. 1049-1049
    Abstract: Introduction: Erythroferrone (ERFE), the recently identified erythroid regulator of iron absorption, is a member of the C1q/TNF-related protein (CTRP) family. It is produced in erythroblasts in response to an increased erythropoietic drive, downregulates hepcidin expression and thereby promotes intestinal iron absorption and mobilization. The levels of Erfe are inappropriately high under conditions of ineffective erythropoiesis in inherited anemias such as thalassemia and congenital dyserythropoietic anemias. However, the mechanism of Erfe mediated Hepcidin inhibition remains unknown. Here, we use transcriptomic analysis of the human hepatoma cell line, Huh7 to identify genes and pathways involved in hepatocyte response to Erfe. Methods: Huh7 cells were seeded in a 6-well cell culture plate. Twenty four hours later, the cells were washed with PBS, and treated with a recombinant murine ERFE monomeric Fc (mEFRE-FC, 10µg/ml) protein or a control IgG (10 ug/ml) for 1h, 6h or 24h in growth media. RNA was isolated, followed by RNA quantification and quality assessment using a 2100 Agilent Bioanalyzer. ERFE is known to regulate Hepcidin antimicrobial peptide (HAMP) transcription and a treatment effect on HAMP expression was demonstrated by qPCR prior to sequencing. A total of 27 mRNA sequencing libraries were constructed from 1ug of human total RNA with the Illumina TruSeq Stranded mRNA Sample Prep protocol and single-end 75 bp reads were generated on an Illumina NextSeq 500. DESeq2 statistical package was used for differential expression testing. Multiple comparisons were adjusted for using a false discovery rate of 5%. Additionally, results were filtered to consider only those genes that demonstrated a fold-change point estimate 〉 2 in either direction. Pathway analysis was performed using the Biological Process gene sets from the Gene Ontology annotation. Results: Compared to control treated Huh7 cells, 3 transcripts were differentially regulated following a one hour treatment with mERFE-Fc, ID1 (Log2 fold-change -1.55, q-value 4.99E-09), BPIFB2 (Log2 fold-change -1.88, q-value 0.036) and ANO1 (Log2 fold-change -1.43, q-value 0.019). A larger number of genes were differentially regulated with longer treatments, 32 genes at 6h and 828 genes at 24h. Among selected genes differentially expressed at 24h, between control treated and Erfe treated cells, we observed a significant reduction in expression of genes known to be directly upregulated by bone morphogenetic proteins (BMPs), including DNA binding protein inhibitor ID1(ID1), DNA binding protein inhibitor ID2 (ID2), DNA binding protein inhibitor ID3 (ID3) and HAMP. BMP6 has been demonstrated to regulate several biological processes such as iron metabolism in the liver, adipogenesis, and insulin sensitization. Interestingly, we also observed upregulation of SLC27A1 (or FATP1, fatty acid transporter, Log2 fold-change 2.27, q-value 0.003), GDNF (Log2 fold-change 2.57, q-value 2.4E-05), GIPR (Log2 fold-change 2.53, q-value 7.9E-07) upon treatment with Erfe at 24h. Previous work has demonstrated that all of these genes are downregulated by BMP6 treatment 1-3. Pathway analysis indicated a number of genes differentially regulated in the GOBP (gene ontology biological processes) iron ion homeostasis pathway, BMP signaling or TGF-β receptor signaling pathway. This assessment further indicated downregulation of cellular hormone levels and metabolic processes and ion homeostasis as biological processes impacted by erythroferrone. Conclusions: Significant differences in gene expression occur in hepatocytes upon interaction with erythroferrone. Many genes in the iron homeostasis, BMP6 signaling metabolic processes were also differentially regulated. This further supports the mechanism of ERFE on iron homeostasis. Disclosures Jasuja: Pfizer: Employment. Sawant:Pfizer: Employment. Pittman:Pfizer: Employment. Quan:Pfizer: Employment.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2018
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Mechanisms of Development, Elsevier BV, Vol. 123, No. 7 ( 2006-07), p. 548-558
    Type of Medium: Online Resource
    ISSN: 0925-4773
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2006
    detail.hit.zdb_id: 1466356-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Journal of Medicinal Chemistry, American Chemical Society (ACS), Vol. 64, No. 1 ( 2021-01-14), p. 326-342
    Type of Medium: Online Resource
    ISSN: 0022-2623 , 1520-4804
    Language: English
    Publisher: American Chemical Society (ACS)
    Publication Date: 2021
    detail.hit.zdb_id: 1491411-6
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...