GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: International Journal of Molecular Sciences, MDPI AG, Vol. 25, No. 7 ( 2024-03-26), p. 3696-
    Abstract: SARS-CoV-2 has accumulated many mutations since its emergence in late 2019. Nucleotide substitutions leading to amino acid replacements constitute the primary material for natural selection. Insertions, deletions, and substitutions appear to be critical for coronavirus’s macro- and microevolution. Understanding the molecular mechanisms of mutations in the mutational hotspots (positions, loci with recurrent mutations, and nucleotide context) is important for disentangling roles of mutagenesis and selection. In the SARS-CoV-2 genome, deletions and insertions are frequently associated with repetitive sequences, whereas C 〉 U substitutions are often surrounded by nucleotides resembling the APOBEC mutable motifs. We describe various approaches to mutation spectra analyses, including the context features of RNAs that are likely to be involved in the generation of recurrent mutations. We also discuss the interplay between mutations and natural selection as a complex evolutionary trend. The substantial variability and complexity of pipelines for the reconstruction of mutations and the huge number of genomic sequences are major problems for the analyses of mutations in the SARS-CoV-2 genome. As a solution, we advocate for the development of a centralized database of predicted mutations, which needs to be updated on a regular basis.
    Type of Medium: Online Resource
    ISSN: 1422-0067
    Language: English
    Publisher: MDPI AG
    Publication Date: 2024
    detail.hit.zdb_id: 2019364-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Nucleic Acids Research, Oxford University Press (OUP), Vol. 52, No. 7 ( 2024-04-24), p. 3870-3885
    Abstract: The canonical stop codons of the nuclear genome of the trypanosomatid Blastocrithidia nonstop are recoded. Here, we investigated the effect of this recoding on the mitochondrial genome and gene expression. Trypanosomatids possess a single mitochondrion and protein-coding transcripts of this genome require RNA editing in order to generate open reading frames of many transcripts encoded as ‘cryptogenes’. Small RNAs that can number in the hundreds direct editing and produce a mitochondrial transcriptome of unusual complexity. We find B. nonstop to have a typical trypanosomatid mitochondrial genetic code, which presumably requires the mitochondrion to disable utilization of the two nucleus-encoded suppressor tRNAs, which appear to be imported into the organelle. Alterations of the protein factors responsible for mRNA editing were also documented, but they have likely originated from sources other than B. nonstop nuclear genome recoding. The population of guide RNAs directing editing is minimal, yet virtually all genes for the plethora of known editing factors are still present. Most intriguingly, despite lacking complex I cryptogene guide RNAs, these cryptogene transcripts are stochastically edited to high levels.
    Type of Medium: Online Resource
    ISSN: 0305-1048 , 1362-4962
    RVK:
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2024
    detail.hit.zdb_id: 186809-3
    detail.hit.zdb_id: 1472175-2
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2023
    In:  BMC Genomics Vol. 24, No. 1 ( 2023-07-10)
    In: BMC Genomics, Springer Science and Business Media LLC, Vol. 24, No. 1 ( 2023-07-10)
    Abstract: Accessory proteins have diverse roles in coronavirus pathobiology. One of them in SARS-CoV (the causative agent of the severe acute respiratory syndrome outbreak in 2002–2003) is encoded by the open reading frame 8 ( ORF8 ). Among the most dramatic genomic changes observed in SARS-CoV isolated from patients during the peak of the pandemic in 2003 was the acquisition of a characteristic 29-nucleotide deletion in ORF8 . This deletion cause splitting of ORF8 into two smaller ORF s, namely ORF8a and ORF8b . Functional consequences of this event are not entirely clear. Results Here, we performed evolutionary analyses of ORF8a and ORF8b genes and documented that in both cases the frequency of synonymous mutations was greater than that of nonsynonymous ones. These results suggest that ORF8a and ORF8b are under purifying selection, thus proteins translated from these ORF s are likely to be functionally important. Comparisons with several other SARS-CoV genes revealed that another accessory gene, ORF7a , has a similar ratio of nonsynonymous to synonymous mutations suggesting that ORF8a, ORF8b, and ORF7a are under similar selection pressure. Conclusions Our results for SARS-CoV echo the known excess of deletions in the ORF7a-ORF7b-ORF8 complex of accessory genes in SARS-CoV-2. A high frequency of deletions in this gene complex might reflect recurrent searches in “functional space” of various accessory protein combinations that may eventually produce more advantageous configurations of accessory proteins similar to the fixed deletion in the SARS-CoV ORF8 gene.
    Type of Medium: Online Resource
    ISSN: 1471-2164
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2023
    detail.hit.zdb_id: 2041499-7
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Microorganisms, MDPI AG, Vol. 11, No. 1 ( 2023-01-16), p. 229-
    Abstract: The analysis of deletions may reveal evolutionary trends and provide new insight into the surprising variability and rapidly spreading capability that SARS-CoV-2 has shown since its emergence. To understand the factors governing genomic stability, it is important to define the molecular mechanisms of deletions in the viral genome. In this work, we performed a statistical analysis of deletions. Specifically, we analyzed correlations between deletions in the SARS-CoV-2 genome and repetitive elements and documented a significant association of deletions with runs of identical (poly-) nucleotides and direct repeats. Our analyses of deletions in the accessory genes of SARS-CoV-2 suggested that there may be a hypervariability in ORF7A and ORF8 that is not associated with repetitive elements. Such recurrent search in a “sequence space” of accessory genes (that might be driven by natural selection) did not yet cause increased viability of the SARS-CoV-2 variants. However, deletions in the accessory genes may ultimately produce new variants that are more successful compared to the viral strains with the conventional architecture of the SARS-CoV-2 accessory genes.
    Type of Medium: Online Resource
    ISSN: 2076-2607
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2720891-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...