GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • English  (1)
  • Natural Sciences  (1)
Material
Language
  • English  (1)
Years
Subjects(RVK)
RVK
  • 1
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2007
    In:  Proceedings of the National Academy of Sciences Vol. 104, No. 32 ( 2007-08-07), p. 13040-13045
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 104, No. 32 ( 2007-08-07), p. 13040-13045
    Abstract: Transcriptional control by β-catenin and lymphoid enhancer-binding factor 1 (LEF1)/T cell factor regulates proliferation in stem cells and tumorigenesis. Here we provide evidence that transcriptional co repressor homeodomain interacting protein kinase 2 (HIPK2) controls the number of stem and progenitor cells in the skin and the susceptibility to develop squamous cell carcinoma. Loss of HIPK2 leads to increased proliferative potential, more rapid G 1 –S transition in cell cycle, and expansion of the epidermal stem cell compartment. Among the critical regulators of G 1 –S transition in the cell cycle, only cyclin D1 is selectively up-regulated in cells lacking HIPK2. Conversely, overexpression of HIPK2 suppresses LEF1/β-catenin-mediated transcriptional activation of cyclin D1 expression. However, deletion of the C-terminal YH domain of HIPK2 completely abolishes its ability to recruit another transcriptional corepressor CtBP and suppress LEF1/β-catenin-mediated transcription. To determine whether loss of HIPK2 leads to increased susceptibility to tumorigenesis, we treat wild-type, Hipk2 +/− , and Hipk2 −/− mice with the two-stage carcinogenesis protocol. Our results indicate that more skin tumors are induced in Hipk2 +/− and Hipk2 −/− mutants, with most of the tumors showing shortened incubation time and malignant progression. Together, our results indicate that HIPK2 is a tumor suppressor that controls proliferation by antagonizing LEF1/β-catenin-mediated transcription. Loss of HIPK2 synergizes with activation of H-ras to induce tumorigenesis.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2007
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...