GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Journal of Clinical Microbiology, American Society for Microbiology, Vol. 54, No. 9 ( 2016-09), p. 2365-2372
    Abstract: Aspergillus section Nigri includes species of interest for animal and human health, although studies on species distribution are limited to human cases. Data on the antifungal susceptibilities and the molecular mechanism of triazole resistance in strains belonging to this section are scant. Forty-two black Aspergillus strains from human patients (16 isolates), animals (14 isolates), and the environment (12 isolates) were molecularly characterized and their in vitro triazole susceptibilities investigated. Aspergillus tubingensis was isolated from humans, animals, and environmental settings, whereas Aspergillus awamori and Aspergillus niger were isolated exclusively from humans. Phylogenetic analyses of β-tubulin and calmodulin gene sequences were concordant in differentiating A. tubingensis from A. awamori and A. niger . Voriconazole and posaconazole (PSZ) were the most active triazoles. One A. tubingensis strain was resistant to itraconazole and PSZ and one A. niger strain to PSZ. Sequence analysis of the cyp51A gene revealed different sequence types within a species, and A. tubingensis strains were also phylogenetically distinct from A. awamori / A. niger strains according to the strain origin and susceptibility profile. Genetic analysis of the cyp51A sequences suggests that two nonsynonymous mutations resulting in amino acid substitutions in the CYP51A protein (changes of L to R at position 21 [L21R] and of Q to R at position 228 [Q228R] ) might be involved in azole resistance. Though azole resistance in black Aspergillus isolates from animals and rural environments does not represent a threat to public health in Southern Italy, the use of triazoles in the clinical setting needs to better monitored. The cyp51A sequence is useful for the molecular identification of black Aspergillus , and point mutations in protein sequences could be responsible for azole resistance phenomena.
    Type of Medium: Online Resource
    ISSN: 0095-1137 , 1098-660X
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2016
    detail.hit.zdb_id: 1498353-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Microbiology Society ; 2014
    In:  Journal of Medical Microbiology Vol. 63, No. 11 ( 2014-11-01), p. 1467-1473
    In: Journal of Medical Microbiology, Microbiology Society, Vol. 63, No. 11 ( 2014-11-01), p. 1467-1473
    Abstract: Fungaemia caused by Malassezia spp. in hospitalized patients requires prompt and appropriate therapy, but standard methods for the definition of the in vitro antifungal susceptibility have not been established yet. In this study, the in vitro susceptibility of Malassezia furfur from bloodstream infections (BSIs) to amphotericin B (AMB), fluconazole (FLC), itraconazole (ITC), posaconazole (POS) and voriconazole (VRC) was assessed using the broth microdilution (BMD) method of the Clinical and Laboratory Standards Institute (CLSI) with different media such as modified Sabouraud dextrose broth (SDB), RPMI and Christensen’s urea broth (CUB). Optimal broth media that allow sufficient growth of M. furfur , and produce reliable and reproducible MICs using the CLSI BMD protocol were assessed. Thirty-six M. furfur isolates collected from BSIs of patients before and during AMB therapy, and receiving FLC prophylaxis, were tested. A good growth of M. furfur was observed in RPMI, CUB and SDB at 32 °C for 48 and 72 h. No statistically significant differences were detected between the MIC values registered after 48 and 72 h incubation. ITC, POS and VRC displayed lower MICs than FLC and AMB. These last two antifungal drugs showed higher and lower MICs, respectively, when the isolates were tested in SDB. SDB is the only medium in which it is possible to detect isolates with high FLC MICs in patients receiving FLC prophylaxis. A large number of isolates showed high AMB MIC values regardless of the media used. In conclusion, SDB might be suitable to determine triazole susceptibility. However, the media, the drug formulation or the breakpoints herein applied might not be useful for assessing the AMB susceptibility of M. furfur from BSIs.
    Type of Medium: Online Resource
    ISSN: 0022-2615 , 1473-5644
    RVK:
    Language: English
    Publisher: Microbiology Society
    Publication Date: 2014
    detail.hit.zdb_id: 2083944-3
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Journal of Medical Microbiology, Microbiology Society, Vol. 63, No. 3 ( 2014-03-01), p. 464-470
    Abstract: Data on the occurrence and epidemiology of Aspergillus spp. in laying hens farms are scant. With the aims of determining levels of airborne contamination in laying hen farms and evaluating the potential risk of infection for workers and animals, 57 air samples from 19 sheds (Group I), 69 from faeces (Group II), 19 from poultry feedstuffs (Group III) and 60 from three anatomical sites (i.e. nostrils, pharynx, ears) of 20 farm workers (Group IV) were cultured. The Aspergillus spp. prevalence in samples ranged from 31.6 % (Group III) to 55.5 % (Group IV), whereas the highest conidia concentration was retrieved in Group II (1.2×10 4 c.f.u. g −1 ) and in Group III (1.9×10 3 c.f.u. g −1 ). The mean concentration of airborne Aspergillus spp. conidia was 70 c.f.u. m −3 with Aspergillus fumigatus (27.3 %) being the most frequently detected species, followed by Aspergillus flavus (6.3 %). These Aspergillus spp. were also isolated from human nostrils (40 %) and ears (35 %) ( P 〈 0.05) (Group IV). No clinical aspergillosis was diagnosed in hens. The results demonstrate a relationship between the environmental contamination in hen farms and presence of Aspergillus spp. on animals and humans. Even if the concentration of airborne Aspergillus spp. conidia (i.e. 70 c.f.u. m −3 ) herein detected does not trigger clinical disease in hens, it causes human colonization. Correct management of hen farms is necessary to control environmental contamination by Aspergillus spp., and could lead to a significant reduction of animal and human colonization.
    Type of Medium: Online Resource
    ISSN: 0022-2615 , 1473-5644
    RVK:
    Language: English
    Publisher: Microbiology Society
    Publication Date: 2014
    detail.hit.zdb_id: 2083944-3
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...