GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Optica Publishing Group  (4)
  • English  (4)
Material
Publisher
  • Optica Publishing Group  (4)
Language
  • English  (4)
Years
  • 1
    Online Resource
    Online Resource
    Optica Publishing Group ; 2020
    In:  Optics Letters Vol. 45, No. 13 ( 2020-07-01), p. 3470-
    In: Optics Letters, Optica Publishing Group, Vol. 45, No. 13 ( 2020-07-01), p. 3470-
    Abstract: Imaging of cerebral vasculature is impeded with the existing fluorescence microscopy methods due to intense light scattering in living tissues and the need for highly invasive craniotomy procedures to resolve structures on a capillary scale. We propose a widefield fluorescence localization microscopy technique for high-resolution transcranial imaging and quantitative assessment of cortical perfusion in mice. The method is based on tracking single fluorescent microparticles sparsely distributed in the blood stream using a simple CMOS camera and a continuous-wave laser source. We demonstrate quantitative transcranial in vivo mapping of the blood flow velocity and direction at capillary level resolution (5 µm) across the entire cortex. The new technique opens a new high-resolution transcranial window into the brain function in health and disease.
    Type of Medium: Online Resource
    ISSN: 0146-9592 , 1539-4794
    Language: English
    Publisher: Optica Publishing Group
    Publication Date: 2020
    detail.hit.zdb_id: 243290-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Optica Publishing Group ; 2021
    In:  Biomedical Optics Express Vol. 12, No. 6 ( 2021-06-01), p. 3214-
    In: Biomedical Optics Express, Optica Publishing Group, Vol. 12, No. 6 ( 2021-06-01), p. 3214-
    Abstract: Low back pain (LBP) is a commonly experienced symptom posing a tremendous healthcare burden to individuals and society at large. The LBP pathology is strongly linked to degeneration of the intervertebral disc (IVD), calling for development of early-stage diagnostic tools for visualizing biomolecular changes in IVD. Multimodal measurements of fluorescence molecular tomography (FMT) and magnetic resonance imaging (MRI) were performed on IVD whole organ culture model using an in-house built FMT system and a high-field MRI scanner. The resulted multimodal images were systematically validated through epifluorescence imaging of the IVD sections at a microscopic level. Multiple image contrasts were exploited, including fluorescence distribution, anatomical map associated with T1-weighted MRI contrast, and water content related with T2 relaxation time. The developed multimodality imaging approach may thus serve as a new assessment tool for early diagnosis of IVD degeneration and longitudinal monitoring of IVD organ culture status using fluorescence markers.
    Type of Medium: Online Resource
    ISSN: 2156-7085 , 2156-7085
    Language: English
    Publisher: Optica Publishing Group
    Publication Date: 2021
    detail.hit.zdb_id: 2572216-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Optica Publishing Group ; 2021
    In:  Optica Vol. 8, No. 6 ( 2021-06-20), p. 796-
    In: Optica, Optica Publishing Group, Vol. 8, No. 6 ( 2021-06-20), p. 796-
    Abstract: Fluorescence microscopy is a powerful enabling tool for biological discovery, albeit its effective penetration depth and resolving capacity are limited due to intense light scattering in living tissues. The recently introduced short-wave infrared cameras and contrast agents featuring fluorescence emission in the second near-infrared (NIR-II) window have extended the achievable penetration to about 2 mm. However, the effective spatial resolution progressively deteriorates with depth due to photon diffusion. Here we introduce diffuse optical localization imaging (DOLI) to enable super-resolution deep-tissue fluorescence microscopy beyond the limits imposed by light diffusion. The method is based on localization of flowing microdroplets encapsulating lead sulfide (PbS)-based quantum dots in a sequence of epi-fluorescence images acquired in the NIR-II spectral window. Experiments performed in tissue mimicking phantoms indicate that high-resolution detection of fluorescent particles can be preserved over 4 mm depth range, while in vivo microangiography of murine cerebral vasculature can be accomplished through intact scalp and skull. The method further enables retrieving depth information from planar fluorescence image recordings by exploiting the localized spot size. DOLI operates in a resolution-depth regime previously inaccessible with optical methods, thus massively enhancing the applicability of fluorescence-based imaging techniques.
    Type of Medium: Online Resource
    ISSN: 2334-2536
    Language: English
    Publisher: Optica Publishing Group
    Publication Date: 2021
    detail.hit.zdb_id: 2779175-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Biomedical Optics Express, Optica Publishing Group, Vol. 11, No. 9 ( 2020-09-01), p. 4989-
    Abstract: Current intravital microscopy techniques visualize tauopathy with high-resolution, but have a small field-of-view and depth-of-focus. Herein, we report a transcranial detection of tauopathy over the entire cortex of P301L tauopathy mice using large-field multifocal illumination (LMI) fluorescence microscopy technique and luminescent conjugated oligothiophenes. In vitro assays revealed that fluorescent ligand h-FTAA is optimal for in vivo tau imaging, which was confirmed by observing elevated probe retention in the cortex of P301L mice compared to non-transgenic littermates. Immunohistochemical staining further verified the specificity of h-FTAA to detect tauopathy in P301L mice. The new imaging platform can be leveraged in pre-clinical mechanistic studies of tau spreading and clearance as well as longitudinal monitoring of tau targeting therapeutics.
    Type of Medium: Online Resource
    ISSN: 2156-7085 , 2156-7085
    Language: English
    Publisher: Optica Publishing Group
    Publication Date: 2020
    detail.hit.zdb_id: 2572216-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...