GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • MDPI AG  (25)
  • English  (25)
  • 1
    In: Forests, MDPI AG, Vol. 13, No. 7 ( 2022-07-12), p. 1093-
    Abstract: Pipeline corridors have been rapidly increasing in length and density because of the ever growing demand for crude oil and natural gas resources in hydrocarbon-rich permafrost regions. Pipeline engineering activities have significant implications for the permafrost environment in cold regions. Along these pipeline corridors, the shrubification in the right-of-way (ROW) has been extensively observed during vegetation recovery. However, the hydrothermal mechanisms of this ROW shrubification have seldom been studied and thus remain poorly understood. This paper reviews more than 112 articles mainly published from 2000 to 2022 and focuses on the hydrothermal mechanisms of shrubification associated with environmental changes induced by the rapidly degrading permafrost from pipeline construction and around the operating pipelines under a warming climate. First, the shrubification from pipeline construction and operation and the ensuing vegetation clearance are featured. Then, key permafrost-related ROW shrubification mechanisms (e.g., from the perspectives of warmer soil, soil moisture, soil type, soil nutrients, topography and landscapes, and snow cover) are discussed. Other key influencing factors on these hydrothermal and other mechanisms are hierarchically documented as well. In the end, future research priorities are identified and proposed. We call for prioritizing more systematic and in-depth investigations and surveys, laboratory testing, long-term field monitoring, and numerical modeling studies of the ROW shrubification along oil and gas pipelines in permafrost regions, such as in boreal and arctic zones, as well as in alpine and high-plateau regions. This review can improve our understanding of shrubification mechanisms under pipeline disturbances and climate changes and help to better manage the ecological environment along pipeline corridors in permafrost regions.
    Type of Medium: Online Resource
    ISSN: 1999-4907
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2527081-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Electronics, MDPI AG, Vol. 12, No. 14 ( 2023-07-21), p. 3175-
    Abstract: Deep-learning-based automatic modulation recognition (AMR) has recently attracted significant interest due to its high recognition accuracy and the lack of a need to manually set classification standards. However, it is extremely challenging to achieve a high recognition accuracy in increasingly complex channel environments and balance the complexity. To address this issue, we propose a multi-modal AMR neural network model with SNR segmentation called M-LSCANet, which integrates an SNR segmentation strategy, lightweight residual stacks, skip connections, and an attention mechanism. In the proposed model, we use time domain I/Q data and constellation diagram data only in medium and high signal-to-noise (SNR) regions to jointly extract the signal features. But for the low SNR region, only I/Q signals are used. This is because constellation diagrams are very recognizable in the medium and high SNRs, which is conducive to distinguishing high-order modulation. However, in the low SNR region, excessive similarity and the blurring of constellations caused by heavy noise will seriously interfere with modulation recognition, resulting in performance loss. Remarkably, the proposed method uses lightweight residuals stacks and rich ski connections, so that more initial information is retained to learn the constellation diagram feature information and extract the time domain features from shallow to deep, but with a moderate complexity. Additionally, after feature fusion, we adopt the convolution block attention module (CBAM) to reweigh both the channel and spatial domains, further improving the model’s ability to mine signal characteristics. As a result, the proposed approach significantly improves the overall recognition accuracy. The experimental results on the RadioML 2016.10B public dataset, with SNR ranging from −20 dB to 18 dB, show that the proposed M-LSCANet outperforms existing methods in terms of classification accuracy, achieving 93.4% and 95.8% at 0 dB and 12 dB, respectively, which are improvements of 2.7% and 2.0% compared to TMRN-GLU. Moreover, the proposed model exhibits a moderate parameter number compared to state-of-the-art methods.
    Type of Medium: Online Resource
    ISSN: 2079-9292
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2662127-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Remote Sensing, MDPI AG, Vol. 15, No. 6 ( 2023-03-12), p. 1547-
    Abstract: Engineering corridors on the Qinghai–Tibet Plateau have substantially modified the regional ecosystem functions and environment, resulting in changes in the alpine ecosystem. In addition, the building and operation of these engineering corridors have led to rapid permafrost degradation, which in turn has impacted local vegetation along these corridors. This study investigated vegetation changes and their driving factors by the methods of coefficient of variation, correlation analysis, and GeoDetector in a 30 km wide buffer zone at each side along the National Highway G214 (G214) at the northern and southern flanks of the Bayan Har Mountains in part of the source area of the Yellow and Yangtze rivers on the southern Qinghai Plateau, West China. The following results were obtained: (1) The Normalized Difference Vegetation Index in Growing Season (NDVIgs) rose slightly in 2010–2019, with an average annual change rate of 0.006/a. Patterns of NDVIgs along the G214 exhibited “low at the northern flank and high at the southern flank of the Bayan Har Mountains”. (2) Spatially, average NDVIgs increased from the first buffer zone at the distance of 0–10 km from the highway centerline to the second buffer zone at 20–30 km perpendicularly away from the G214. Furthermore, the first buffer zone had the lowest coefficient of variation, possibly due to a low vegetation recovery as a result of the greatest influence of the G214 on NDVIgs at 0–10 km. (3) Furthermore, annual precipitation (AP) was the dominant factor for significantly (p 〈 0.01) and positively influencing the variations in NDVIgs (R = 0.75, p 〈 0.01). Additionally, NDVIgs was more strongly influenced by the two combined factors than any single one, with the highest q-value (0.74) for the interactive influences of AP and annual average air temperature (AAAT) and followed by that of the AP and mean annual ground temperature (MAGT) at the depth of zero annual amplitude (15 m). Evidently, the construction and operation of the G214 have directly and indirectly affected vegetation through changing environmental variables, with significant impacts on NDVIgs extended at least 20 km outwards from the highway. This study helps better understand the environmental impacts along the engineering corridors in elevational permafrost regions at mid and low latitudes and their management.
    Type of Medium: Online Resource
    ISSN: 2072-4292
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2513863-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    MDPI AG ; 2017
    In:  Energies Vol. 10, No. 10 ( 2017-10-22), p. 1670-
    In: Energies, MDPI AG, Vol. 10, No. 10 ( 2017-10-22), p. 1670-
    Type of Medium: Online Resource
    ISSN: 1996-1073
    Language: English
    Publisher: MDPI AG
    Publication Date: 2017
    detail.hit.zdb_id: 2437446-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: International Journal of Molecular Sciences, MDPI AG, Vol. 23, No. 20 ( 2022-10-20), p. 12588-
    Abstract: The RPW8s (Resistance to Powdery Mildew 8) are atypical broad-spectrum resistance genes that provide resistance to the powdery mildew fungi. Powdery mildew of rubber tree is one of the serious fungal diseases that affect tree growth and latex production. However, the RPW8 homologs in rubber tree and their role of resistance to powdery mildew remain unclear. In this study, four RPW8 genes, HbRPW8-a, b, c, d, were identified in rubber tree, and phylogenetic analysis showed that HbRPW8-a was clustered with AtRPW8.1 and AtRPW8.2 of Arabidopsis. The HbRPW8-a protein was localized on the plasma membrane and its expression in rubber tree was significantly induced upon powdery mildew infection. Transient expression of HbRPW8-a in tobacco leaves induced plant immune responses, including the accumulation of reactive oxygen species and the deposition of callose in plant cells, which was similar to that induced by AtRPW8.2. Consistently, overexpression of HbRPW8-a in Arabidopsis thaliana enhanced plant resistance to Erysiphe cichoracearum UCSC1 and Pseudomonas syringae pv. tomato DC30000 (PstDC3000). Moreover, such HbRPW8-a mediated resistance to powdery mildew was in a salicylic acid (SA) dependent manner. Taken together, we demonstrated a new RPW8 member in rubber tree, HbRPW8-a, which could potentially contribute the resistance to powdery mildew.
    Type of Medium: Online Resource
    ISSN: 1422-0067
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2019364-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: International Journal of Molecular Sciences, MDPI AG, Vol. 22, No. 15 ( 2021-07-24), p. 7916-
    Abstract: The function and regulation of lipid metabolic genes are essential for plant male reproduction. However, expression regulation of lipid metabolic genic male sterility (GMS) genes by noncoding RNAs is largely unclear. Here, we systematically predicted the microRNA regulators of 34 maize white brown complex members in ATP-binding cassette transporter G subfamily (WBC/ABCG) genes using transcriptome analysis. Results indicate that the ZmABCG26 transcript was predicted to be targeted by zma-miR164h-5p, and their expression levels were negatively correlated in maize B73 and Oh43 genetic backgrounds based on both transcriptome data and qRT-PCR experiments. CRISPR/Cas9-induced gene mutagenesis was performed on ZmABCG26 and another lipid metabolic gene, ZmFAR1. DNA sequencing, phenotypic, and cytological observations demonstrated that both ZmABCG26 and ZmFAR1 are GMS genes in maize. Notably, ZmABCG26 proteins are localized in the endoplasmic reticulum (ER), chloroplast/plastid, and plasma membrane. Furthermore, ZmFAR1 shows catalytic activities to three CoA substrates in vitro with the activity order of C12:0-CoA 〉 C16:0-CoA 〉 C18:0-CoA, and its four key amino acid sites were critical to its catalytic activities. Lipidomics analysis revealed decreased cutin amounts and increased wax contents in anthers of both zmabcg26 and zmfar1 GMS mutants. A more detailed analysis exhibited differential changes in 54 monomer contents between wild type and mutants, as well as between zmabcg26 and zmfar1. These findings will promote a deeper understanding of miRNA-regulated lipid metabolic genes and the functional diversity of lipid metabolic genes, contributing to lipid biosynthesis in maize anthers. Additionally, cosegregating molecular markers for ZmABCG26 and ZmFAR1 were developed to facilitate the breeding of male sterile lines.
    Type of Medium: Online Resource
    ISSN: 1422-0067
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2019364-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Applied Sciences, MDPI AG, Vol. 13, No. 8 ( 2023-04-18), p. 5069-
    Abstract: Varicose veins in the lower limb are a common and progressive venous disorder that can significantly reduce patients’ quality of life and pose a threat to their overall health if left untreated. However, current treatment approaches often involve invasive intervention. High-intensity focused ultrasound (HIFU) technology has the potential to treat varicose veins non-invasively, but most systems are bulky and expensive. This study proposes an innovative, integrated system that uses a 4.5 MHz therapeutic probe guided by a 12 MHz ultrasound imaging probe to treat varicose veins in the lower limb. The system aims to achieve high accuracy in repeated treatments by using a high-speed scanning positioning structure, increasing the imaging framerate, and reducing the system’s overall volume. The system’s accuracy is evaluated through reset error tests on an acrylic board, and its effectiveness is tested through in vivo experiments on rabbit marginal ear veins. Tests on porcine arteries are conducted to identify suitable focal points for vascular treatment. The experimental results demonstrate the system’s high accuracy, with a reset error of less than 0.07 mm, and an obvious shrinkage of the predetermined treatment area of the marginal ear veins after therapy. The study identifies that setting the focus on the vascular wall can improve the efficiency of vascular treatment, resulting in significant vasoconstriction changes. These experimental findings provide sufficient evidence for the system’s potential for clinical application in vascular treatment.
    Type of Medium: Online Resource
    ISSN: 2076-3417
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2704225-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Applied Sciences, MDPI AG, Vol. 13, No. 3 ( 2023-01-30), p. 1764-
    Abstract: With the support of cloud computing technology, it is easier for financial institutions to obtain more key information about the whole industry chain. However, the massive use of financial data has many potential risks. In order to better cope with this dilemma and better protect the financial privacy of users, we propose a privacy protection model based on cloud computing. The model provides four levels of privacy protection according to the actual needs of users. At the highest level of protection, the server could not access any information about the user and the raw data, nor could it recover the computational characteristics of the data. In addition, due to the universality of the mathematical principle of linear operators, the model could effectively protect and accelerate all models based on linear operations. The final results showed that the method can increase the speed by 10 times, compared with the privacy protection method that only uses local computing power instead of the cloud server. It can also effectively prevent the user’s privacy from being leaked with relatively minimal delay cost, compared with no privacy protection method. Finally, we design a multi-user scheduling model to deploy the model in a real scenario, which could maximise server power and protect user privacy as well.
    Type of Medium: Online Resource
    ISSN: 2076-3417
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2704225-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Energies, MDPI AG, Vol. 13, No. 18 ( 2020-09-20), p. 4928-
    Abstract: Traditional fault indicators based on 3G and 4G cannot send out fault-generated information if the distribution lines are located in the system across remote mountainous or forest areas. Hence, power distribution systems in rural areas only rely on patrol to find faults currently, which wastes time and lacks efficiency. With the development of the Internet of things (IoT) technology, some studies have suggested combining the long-range (LoRa) and the narrowband Internet of Things (NB-IoT) technologies to increase the data transmission distance and reduce the self-built communication system operating cost. In this paper, we propose an optimal configuration scheme for novel intelligent IoT-based fault indicators. The proposed fault indicator combines LoRa and NB-IoT communication technologies with a long communication distance to achieve minimum power consumption and high-efficiency maintenance. Under this given cyber network and physical power distribution network, the whole fault location process depends on the fault indicator placement and the deployment of the communication network. The overall framework and the working principle of the fault indicators based on LoRa and NB-IoT are first illustrated to establish the optimization placement model of the proposed novel IoT-based fault indicator. Secondly, an optimization placement method has been proposed to obtain the optimal number of the acquisition and collection units of the fault indicators, as well as their locations. In the proposed method, the attenuation of the communication network and the power-supply reliability have been specially considered in the fault location process under the investment restrictions of the fault indicators. The effectiveness of the proposed method has been validated by the analysis results in an IEEE Roy Billinton Test System (IEEE-RBTS) typical system.
    Type of Medium: Online Resource
    ISSN: 1996-1073
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2437446-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Water, MDPI AG, Vol. 13, No. 4 ( 2021-02-07), p. 431-
    Abstract: In this study, an integrated multi-soil-layering and subsurface wastewater infiltration (MSL-SWI) system was developed for decentralized domestic sewage treatment under high hydraulic loading rates (HLRs). To improve sustainable nitrogen removal, the influence of intermittent operation and shunt distributing wastewater on the performance of MSL-SWI systems was investigated. The optimal performance—with removal efficiencies of 93.41% for chemical oxygen demand, 97.91% for total phosphorus, 74.02% for ammonia nitrogen, and 73.56% for total nitrogen—was achieved using both intermittent operation and shunt distributing wastewater under an HLR of 0.3 m3 m−2 d−1. The activity of microbial nitrogen functional genes (i.e., amoA, nirK, nirS, nosZ, and anammox 16S rRNA) and their relationships with nitrogen transformation rates were further analyzed in different layers of the system. The results imply that nitrification and anaerobic ammonium oxidation in the MSL section coupled with nitrification and denitrification in the SWI section contribute to main the mechanisms of sustainable nitrogen removal. In summary, MSL-SWI systems not only operate with high efficiency under high HLRs, but the contaminant removal is also stable and sustainable, which are promising properties for domestic sewage treatment in areas where land resources are limited.
    Type of Medium: Online Resource
    ISSN: 2073-4441
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2521238-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...