GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Bentham Science Publishers Ltd.  (3)
  • English  (3)
Material
Publisher
  • Bentham Science Publishers Ltd.  (3)
Language
  • English  (3)
Years
FID
  • 1
    In: Combinatorial Chemistry & High Throughput Screening, Bentham Science Publishers Ltd., Vol. 26, No. 8 ( 2023-07), p. 1503-1518
    Abstract: Emerging evidence indicates that long noncoding RNA (lncRNA) plays an important biological role in clear cell renal cell carcinoma (ccRCC); however, the clinical value of tumor mutation burden-related lncRNA in ccRCC patients is unknown yet. Method: Somatic mutation profiles and lncRNA expression data of ccRCC were downloaded from the TCGA database. We retrospectively analyzed lncRNA expression data and survival information from 116 patients with ccRCC fromJanuary 2013 to January 2014. Univariate and multivariate Cox regression analyses were performed to construct lncRNA signature, and the prognosis value was determined by Kaplan-Mayer and receiver operating characteristic curve (ROC) analysis. Results: Based on 160 differentially expressed TMB-related lncRNAs, two TMB-related molecular clusters with distinct immune checkpoints expression and immune cells infiltration were established for ccRCC patients. Moreover, a novel TMB-related lncRNA signature was constructed based on five lncRNAs for individualized prognosis assessment. High-risk group represents significantly worse overall survival in all cohorts. The area under the ROC curve was 0.716, 0.775 and 0.744 in the training cohort, testing cohort and TCGA cohort, respectively. Results of qRT-PCR successfully validated the expression levels of AP002360.3, LINC00460, AL590094.1, LINC00944 and LINC01843 in HK-2, 786-O, 769-P and ACHN cells. More importantly, the predictive performance of TMB-related lncRNA signature was successfully validated in an independent cohort of 116 ccRCC patients at our institution. Conclusion: This study successfully developed and validated a novel TMB-related lncRNA signature for individualized prognosis assessment of ccRCC patients.
    Type of Medium: Online Resource
    ISSN: 1386-2073
    Language: English
    Publisher: Bentham Science Publishers Ltd.
    Publication Date: 2023
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Bentham Science Publishers Ltd. ; 2022
    In:  Recent Patents on Anti-Cancer Drug Discovery Vol. 17, No. 4 ( 2022-11), p. 326-342
    In: Recent Patents on Anti-Cancer Drug Discovery, Bentham Science Publishers Ltd., Vol. 17, No. 4 ( 2022-11), p. 326-342
    Abstract: Local anesthetics are voltage-gated sodium channel blockers primarily administered locally or to the innervating nerves for anesthetic or analgesic purposes. In vitro studies have found direct effects of local anesthetics on cancer cells, such as impact on cancer cell proliferation, apoptosis, migration, invasion, and chemosensitivity, by multiple mechanisms. So far, in vivo evidence regarding the effect of local anesthetics on cancer cell lines is relatively lacking. Local and regional anesthesia administration has been reported to reduce postoperative pain and opioid use in cancer treatment. Additionally, regional anesthesia may reduce the perioperative stress response. However, the clinical therapeutic application of local anesthetics in cancer remains exploratory. In this review, we will discuss the direct and indirect effects of local anesthetics on cancer cells, and discuss the current evidence related to the use of local anesthetics in the treatment of cancer.
    Type of Medium: Online Resource
    ISSN: 1574-8928
    Language: English
    Publisher: Bentham Science Publishers Ltd.
    Publication Date: 2022
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Bentham Science Publishers Ltd. ; 2024
    In:  Combinatorial Chemistry & High Throughput Screening Vol. 27, No. 12 ( 2024-08), p. 1788-1807
    In: Combinatorial Chemistry & High Throughput Screening, Bentham Science Publishers Ltd., Vol. 27, No. 12 ( 2024-08), p. 1788-1807
    Abstract: Genomic instability can drive clonal evolution, continuous modification of tumor genomes, and tumor genomic heterogeneity. The molecular mechanism of genomic instability still needs further investigation. This study aims to identify novel genome instabilityassociated lncRNAs (GI-lncRNAs) and investigate the role of genome instability in pan-Renal cell carcinoma (RCC). Materials and Methods: A mutator hypothesis was employed, combining the TCGA database of somatic mutation (SM) information, to identify GI-lncRNAs. Subsequently, a training cohort (n = 442) and a testing cohort (n = 439) were formed by randomly dividing all RCC patients. Based on the training cohort dataset, a multivariate Cox regression analysis lncRNAs risk model was created. Further validations were performed in the testing cohort, TCGA cohort, and different RCC subtypes. To confirm the relative expression levels of lncRNAs in HK-2, 786-O, and 769-P cells, qPCR was carried out. Functional pathway enrichment analyses were performed for further investigation. Results: A total of 170 novel GI-lncRNAs were identified. The lncRNA prognostic risk model was constructed based on LINC00460, AC073218.1, AC010789.1, and COLCA1. This risk model successfully differentiated patients into distinct risk groups with significantly different clinical outcomes. The model was further validated in multiple independent patient cohorts. Additionally, functional and pathway enrichment analyses revealed that GI-lncRNAs play a crucial role in GI. Furthermore, the assessments of immune response, drug sensitivity, and cancer stemness revealed a significant relationship between GI-lncRNAs and tumor microenvironment infiltration, mutational burden, microsatellite instability, and drug resistance. Conclusions: In this study, we discovered four novel GI-lncRNAs and developed a novel signature that effectively predicted clinical outcomes in pan-RCC. The findings provide valuable insights for pan-RCC immunotherapy and shed light on potential underlying mechanisms.
    Type of Medium: Online Resource
    ISSN: 1386-2073
    Language: English
    Publisher: Bentham Science Publishers Ltd.
    Publication Date: 2024
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...