GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Association for Cancer Research (AACR)  (3)
  • English  (3)
  • 1
    In: Blood Cancer Discovery, American Association for Cancer Research (AACR), Vol. 3, No. 3 ( 2022-05-05), p. 194-207
    Abstract: The genetics of relapsed pediatric acute myeloid leukemia (AML) has yet to be comprehensively defined. Here, we present the spectrum of genomic alterations in 136 relapsed pediatric AMLs. We identified recurrent exon 13 tandem duplications (TD) in upstream binding transcription factor (UBTF) in 9% of relapsed AML cases. UBTF-TD AMLs commonly have normal karyotype or trisomy 8 with cooccurring WT1 mutations or FLT3-ITD but not other known oncogenic fusions. These UBTF-TD events are stable during disease progression and are present in the founding clone. In addition, we observed that UBTF-TD AMLs account for approximately 4% of all de novo pediatric AMLs, are less common in adults, and are associated with poor outcomes and MRD positivity. Expression of UBTF-TD in primary hematopoietic cells is sufficient to enhance serial clonogenic activity and to drive a similar transcriptional program to UBTF-TD AMLs. Collectively, these clinical, genomic, and functional data establish UBTF-TD as a new recurrent mutation in AML. Significance: We defined the spectrum of mutations in relapsed pediatric AML and identified UBTF-TDs as a new recurrent genetic alteration. These duplications are more common in children and define a group of AMLs with intermediate-risk cytogenetic abnormalities, FLT3-ITD and WT1 alterations, and are associated with poor outcomes. See related commentary by Hasserjian and Nardi, p. 173. This article is highlighted in the In This Issue feature, p. 171.
    Type of Medium: Online Resource
    ISSN: 2643-3230 , 2643-3249
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2022
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 79, No. 13_Supplement ( 2019-07-01), p. 277-277
    Abstract: With limited therapeutic options, poor overall 5-year survival rates, and increasing incidence, pancreas cancer is estimated to become the second leading cause of cancer deaths by 2030. Recognizing the need for transformative advances in pancreas cancer management, we developed an in vivo target discovery platform to uncover molecular vulnerabilities in patient-derived pancreatic ductal adenocarcinoma (PDAC) xenografts to identify and rapidly translate novel therapeutic concepts to the clinic. We identified protein arginine methyltransferase 1 (PRMT1) as a dependency in PDAC required for disease maintenance and progression. Extensive genetic and pharmacological studies support PRMT1 as a novel vulnerability, which prompted our design and synthesis of proprietary series of potent, selective PRMT Type I inhibitors (PRMTi) with compelling in vivo activity. While advancing the project in drug discovery, we deployed a comprehensive approach to elucidate the mechanism of action of PRMTi. We characterized the PRMT1 interactome via PRMT1 immunoprecipitation followed by LC/MS and observed that PRMT1 binding partners were significantly enriched in RNA-binding and -processing genes. In addition, because methylation of arginine residues is a common post-translational modification regulating protein function, we identified substrates differentially methylated upon PRMT inhibition. Integrating these results with the PRMT1 interactome confirmed a strong correlation between PRMT1 substrates and complexes that are physically associated and linked to RNA metabolism. Transcriptome assays demonstrated that PRMT inhibition globally impaired RNA metabolism, including but not limited to RNA splicing, transcription termination, and R-loop formation. In addition, PRMTi caused a profound down-regulation of multiple pathways involved in the DNA damage response (DDR) promoting genomic instability. Taken together, these data support PRMT1 as a compelling target in an area of high unmet medical need and inform a mechanism-based translational strategy for future clinical development. Citation Format: Virginia Giuliani, Alessandro Carugo, Meredith Miller, Lionel Sanz, Chiu-Yi Liu, Christopher A Bristow, Erika Suzuki, Caleb A Class, Stella R. Hartono, Guang Gao, Ningping Feng, Jason P Gay, Bhavatarini Vangamudi, Joseph R Marszalek, Jeffrey Kovacs, Maria Emilia Di Francesco, Frederic Chedin, Philip Jones, Giulio Draetta, Timothy Heffernan. Inhibition of protein arginine methylation alters RNA metabolism and DNA damage response providing a new therapeutic strategy in pancreatic ductal adenocarcinoma [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2019; 2019 Mar 29-Apr 3; Atlanta, GA. Philadelphia (PA): AACR; Cancer Res 2019;79(13 Suppl):Abstract nr 277.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2019
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 80, No. 21 ( 2020-11-01), p. 4840-4853
    Abstract: Src homology 2 domain-containing phosphatase (SHP2) is a phosphatase that mediates signaling downstream of multiple receptor tyrosine kinases (RTK) and is required for full activation of the MAPK pathway. SHP2 inhibition has demonstrated tumor growth inhibition in RTK-activated cancers in preclinical studies. The long-term effectiveness of tyrosine kinase inhibitors such as the EGFR inhibitor (EGFRi), osimertinib, in non–small cell lung cancer (NSCLC) is limited by acquired resistance. Multiple clinically identified mechanisms underlie resistance to osimertinib, including mutations in EGFR that preclude drug binding as well as EGFR-independent activation of the MAPK pathway through alternate RTK (RTK-bypass). It has also been noted that frequently a tumor from a single patient harbors more than one resistance mechanism, and the plasticity between multiple resistance mechanisms could restrict the effectiveness of therapies targeting a single node of the oncogenic signaling network. Here, we report the discovery of IACS-13909, a specific and potent allosteric inhibitor of SHP2, that suppresses signaling through the MAPK pathway. IACS-13909 potently impeded proliferation of tumors harboring a broad spectrum of activated RTKs as the oncogenic driver. In EGFR-mutant osimertinib-resistant NSCLC models with EGFR-dependent and EGFR-independent resistance mechanisms, IACS-13909, administered as a single agent or in combination with osimertinib, potently suppressed tumor cell proliferation in vitro and caused tumor regression in vivo. Together, our findings provide preclinical evidence for using a SHP2 inhibitor as a therapeutic strategy in acquired EGFRi-resistant NSCLC. Significance: These findings highlight the discovery of IACS-13909 as a potent, selective inhibitor of SHP2 with drug-like properties, and targeting SHP2 may serve as a therapeutic strategy to overcome tumor resistance to osimertinib.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2020
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...