GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Scientific Reports, Springer Science and Business Media LLC, Vol. 13, No. 1 ( 2023-09-04)
    Abstract: Diprotodontians are the morphologically and ecologically most diverse order of marsupials. However, an approximately 30-million-year gap in the Australian terrestrial vertebrate fossil record means that the first half of diprotodontian evolution is unknown. Fossil taxa from immediately either side of this gap are therefore critical for reconstructing the early evolution of the order. Here we report the likely oldest-known koala relatives (Phascolarctidae), from the late Oligocene Pwerte Marnte Marnte Local Fauna (central Australia). These include coeval species of Madakoala and Nimiokoala , as well as a new probable koala (?Phascolarctidae). The new taxon, Lumakoala blackae gen. et sp. nov., was comparable in size to the smallest-known phascolarctids, with body-mass estimates of 2.2–2.6 kg. Its bunoselenodont upper molars retain the primitive metatherian condition of a continuous centrocrista, and distinct stylar cusps B and D which lacked occlusion with the hypoconid. This structural arrangement: (1) suggests a morphocline within Phascolarctidae from bunoselenodonty to selenodonty; and (2) better clarifies the evolutionary transitions between molar morphologies within Vombatomorphia. We hypothesize that the molar form of Lumakoala blackae approximates the ancestral condition of the suborder Vombatiformes. Furthermore, it provides a plausible link between diprotodontians and the putative polydolopimorphians Chulpasia jimthorselli and Thylacotinga bartholomaii from the early Eocene Tingamarra Local Fauna (eastern Australia), which we infer as having molar morphologies consistent with stem diprotodontians.
    Type of Medium: Online Resource
    ISSN: 2045-2322
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2023
    detail.hit.zdb_id: 2615211-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Alcheringa: An Australasian Journal of Palaeontology, Informa UK Limited
    Type of Medium: Online Resource
    ISSN: 0311-5518 , 1752-0754
    Language: English
    Publisher: Informa UK Limited
    Publication Date: 2023
    detail.hit.zdb_id: 2272537-4
    SSG: 13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2021
    In:  Proceedings of the National Academy of Sciences Vol. 118, No. 23 ( 2021-06-08)
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 118, No. 23 ( 2021-06-08)
    Abstract: Development has often been viewed as a constraining force on morphological adaptation, but its precise influence, especially on evolutionary rates, is poorly understood. Placental mammals provide a classic example of adaptive radiation, but the debate around rate and drivers of early placental evolution remains contentious. A hallmark of early dental evolution in many placental lineages was a transition from a triangular upper molar to a more complex upper molar with a rectangular cusp pattern better specialized for crushing. To examine how development influenced this transition, we simulated dental evolution on “landscapes” built from different parameters of a computational model of tooth morphogenesis. Among the parameters examined, we find that increases in the number of enamel knots, the developmental precursors of the tooth cusps, were primarily influenced by increased self-regulation of the molecular activator (activation), whereas the pattern of knots resulted from changes in both activation and biases in tooth bud growth. In simulations, increased activation facilitated accelerated evolutionary increases in knot number, creating a lateral knot arrangement that evolved at least ten times on placental upper molars. Relatively small increases in activation, superimposed on an ancestral tritubercular molar growth pattern, could recreate key changes leading to a rectangular upper molar cusp pattern. Tinkering with tooth bud geometry varied the way cusps initiated along the posterolingual molar margin, suggesting that small spatial variations in ancestral molar growth may have influenced how placental lineages acquired a hypocone cusp. We suggest that development could have enabled relatively fast higher-level divergence of the placental molar dentition.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2021
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...