GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Association for Cancer Research (AACR)  (5)
  • English  (5)
  • 2015-2019  (5)
  • 2017  (5)
Material
Publisher
  • American Association for Cancer Research (AACR)  (5)
Language
  • English  (5)
Years
  • 2015-2019  (5)
Year
  • 2017  (5)
Subjects(RVK)
  • 1
    Online Resource
    Online Resource
    American Association for Cancer Research (AACR) ; 2017
    In:  Cancer Research Vol. 77, No. 13_Supplement ( 2017-07-01), p. 212-212
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 77, No. 13_Supplement ( 2017-07-01), p. 212-212
    Abstract: The receptor tyrosine kinase c-ErbB2 is amplified in breast and ovarian cancer. The linear pathways through which signals by c-ErbB2 are transduced is well known. However, second generation questions that address spatial aspects of signaling remain. To address this, we have undertaken a mass spectrometry approach to identify phosphoproteins. We have used two tyrosine kinase inhibitors, Lapatinib and CP724714, that inhibit phosphorylation of c-ErbB2 to identify phosphoproteins. SKOV-3, an ovarian cancer cell line that endogenously overexpresses c-ErbB2 was grown in culture without serum for 72 hrs. Cells were then stimulated in the presence or absence of inhibitor with EGF (100ng/ml) as a ligand for 60 mins. Subsequently, cells were lysed and evaluated by western blotting with anti-phosphotyrosine antibody (4G10). Following stimulation of cells with EGF, maximal phosphorylation of c-ErbB2 was observed at 60 minutes. Lapatinib (10μM) and CP724714 (15μM) completely inhibited phosphorylation of c-ErbB2, which was confirmed by immunoprecipitation. This was further confirmed by the inhibition of downstream effectors (Erk1/2, Akt). Lapatinib (10 μM) also completely inhibited phosphorylation of EGFR while CP724714 (15μM) only inhibited partially. Cellular lysates were prepared from quiescent cells (grown without serum), after stimulation with EGF in the presence or absence of inhibitors. Purified phosphoproteins from all three samples following digestion with trypsin were subjected to mass spectrometry (Nano LC ESI MS/MS). We identified totally 62 phosphoproteins. Twenty seven phosphoproteins were observed in all the 3 samples while 17 phosphoproteins were identified both in the EGF stimulated and lapatinib treated samples. Eighteen unique phosphoproteins were observed only in the EGF stimulated sample suggesting that they are specific to signaling by c-ErbB2. The novel phosphoproteins included the proteins that partcipate in carbohydrate metabolism,cytoskeleton, cell migration and proliferation. We have evaluated two phosphoproteins, LASP-1 and Aldose reductase that has not been previously described following phosphorylation of c-ErbB2. LASP-1 is an oncogene and is located as the same arm 17q21 as c-ErbB2. It was not expressed in the normal ovary or fallopian tube. However, it was over-expressed in 17% of tumours (n=85) from patients with ovarian cancer. c-ErbB2 was not expressed in tumours that expressed LASP1. Aldose reductase is a cytosolic NADPH dependent oxidoreductase that catalyzes the reduction of glucose to sorbitol, the first step in polyol pathway of glucose metabolism. The activity of aldose reductase in reducing NADPH as a substrate was significantly higher in lysates from EGF stimulated as compared to the starved cells. Identification of phosphoproteins by using mass spectrometry is promising in identifying novel substrates and pathways following phosphorylation of c-ErbB2. Citation Format: C Sidhanth, Manoj Garg, P Manasa, S Krishna Priya, S Bindhya, S Sneha, R.P. Nagare, S Shirley, M Kanchan, Trivadi S. Ganesan. Identification by mass spectrometry of unique phosphoproteins subsequent to signaling through c-ErbB2 [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2017; 2017 Apr 1-5; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2017;77(13 Suppl):Abstract nr 212. doi:10.1158/1538-7445.AM2017-212
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2017
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 77, No. 13_Supplement ( 2017-07-01), p. 3018-3018
    Abstract: Background: Receptor tyrosine kinase alterations have played a significant role in therapeutic decisions for cancer due to their oncogenic nature and response to targeted small molecule kinase inhibitors. Increased genomic profiling of tumors using hybrid-capture based next-generation sequencing approaches now reveal the presence of previously unknown fusions and alterations involving kinases in a diverse set of cancers. Here we report the presence and therapeutic significance of recurrent and novel fusions involving RET, a known oncogenic tyrosine kinase receptor, in breast cancer. Methods: Comprehensive genomic profiling on formalin-fixed, paraffin embedded patient tumor tissues was performed using FoundationOne platform that covers the entire coding region for 315 cancer-related genes and introns of 28 genes involved in rearrangements at a depth of 500-1000X (Foundation Medicine, MA). Out of 23 rearrangements, two representative RET fusion expression vectors were synthesized and expressed in non-tumorigenic cell lines (breast MCF10A and mouse 3T3 fibroblasts) and were evaluated for RET kinase signaling, drug response, and tumorigenicity. Results: RET gene fusions, the canonical NCOA4-RET and a novel, noncanonical RASGEF1A-RET fusion, were identified in two separate breast cancers and both include exons required to retain the intact kinase domain of Ret. The novel RASGEF1A-RET fusion includes the non-coding region of RASGEF1A potentially resulting in a truncated RET protein using an alternate internal start site in exon 11 of RET. In vitro characterization of both fusions expressed in mouse 3T3 and human MCF10a cell lines revealed constitutive kinase activation and subsequent downstream signaling as evidenced by phosphorylation of Ret, Erk and Akt. This is the first reported noncanonical RET rearrangement resulting in a 5’ truncated but functional RET kinase. Non-tumorigenic cell lines with stable expression of either rearrangement showed transformed phenotypes assessed by changes in morphology, enhanced growth rate, colony forming ability, and tumor formation in mice. RET fusion-transformed cells were exquisitely sensitive to treatment with RET inhibitors when evaluated in both short-term and long-term functional assays. NCOA4-RET was found by CGP in an index case of metastatic ER+/HER2+ breast cancer that had radiographic evidence of disease progression while on trastuzumab, pertuzumab, and anastrazole. Subsequent treatment with cabozantinib plus anastrazole led to a rapid clinical and radiographic response. Conclusion: CGP techniques involving hybrid-capture based approaches can identify previously unreported but recurrent RET gene fusions in breast cancer. Here, we show that RET fusions including both canonical and non-canonical complex rearrangements are functional and may represent promising therapeutic targets in selected breast cancer patients. Citation Format: Bhavna S. Paratala, Jeffrey S. Ross, Casey B. Williams, Whitney Petrosky, Kirstin A. Williams, Jon Chung, Sonia C. Dolfi, Shridar Ganesan, Siraj Ali, Brian Leyland-Jones, Kim M. Hirshfield. RET rearrangements as promising therapeutic targets in breast cancer [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2017; 2017 Apr 1-5; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2017;77(13 Suppl):Abstract nr 3018. doi:10.1158/1538-7445.AM2017-3018
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2017
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Association for Cancer Research (AACR) ; 2017
    In:  Cancer Research Vol. 77, No. 13_Supplement ( 2017-07-01), p. 2487-2487
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 77, No. 13_Supplement ( 2017-07-01), p. 2487-2487
    Abstract: Individuals with germline mutations in the breast cancer susceptibility gene, BRCA2, have an approximate 70% risk of developing breast cancer, a 30% risk of developing ovarian cancer, a 20-fold increased risk of developing prostate cancer, and a 10-fold risk of developing pancreatic cancer during their lifetime. Loss of function germline mutations in BRCA2 affect its role in the homologous recombination (HR) DNA repair pathway leading to significant genomic instability. In addition to deleterious truncating mutations, several sequence variants, collectively called Variants of Unknown Significance (VUS), have been identified and are distributed along its length. One such variant is rs11571833, a nonsense mutation in the last exon (c.9976A & gt;T, K3326X), resulting in the loss of the C-terminal 93 amino acid residues in BRCA2. This truncated variant has been previously described as a polymorphism that does not increase susceptibility to breast and ovarian cancers, and as a neutral unclassified variant non-deleterious to its function. However, recent studies identified K3326X to be enriched in breast cancer cases and to increase the risk for lung, pancreatic, ovarian, and upper aero-digestive tract cancers. Preliminary data, obtained from the Rutgers Cancer Institute of New Jersey breast cancer case-control study, identified K3326X enrichment in 1.25% of cases compared to 0.7% of controls. Several of the carriers had second primaries and displayed a trend toward increased number of family members diagnosed with colon cancer. Notably, K3326X was also identified in 1.38% (11 of 796) of our histologically-diverse cohort of genomically-profiled tumors that included cancers of the breast, ovarian/fallopian tube, lung, vulvar, cancer of unknown primary, and one breast cancer case having prolonged response to platinum-based therapy. Thus, K3326X may represent a functional loss of wild type BRCA2 function, as we observe concomitant loss of heterozygosity at this locus. In a preliminary study, we evaluated the K3326X variant, in vitro, in a functional DR-GFP-based reporter assay measuring HR. Our data reveal the BRCA2 K3326X variant to be impaired in the HR pathway indicating a loss of wild-type protein function. We will also evaluate cell viability of the K3326X variant in the presence of DNA damaging drugs like cisplatin, poly-ADP ribose polymerase inhibitors and mitomycin C. Future studies will also incorporate a retrospective evaluation of tumor specimens that have undergone comprehensive genomic profiling. These data would indicate that BRCA2 K3326X represents a functional hypomorphic variant that may have implications in therapeutic approaches and cancer risk evaluations across a spectrum of tumor types. Citation Format: Srilatha R. Simhadri, Sonia C. Dolfi, Atul Kulkarni, Bing Xia, Shridar Ganesan, Kim M. Hirshfield. Functional characterization of the BRCA2 variant, K3326X [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2017; 2017 Apr 1-5; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2017;77(13 Suppl):Abstract nr 2487. doi:10.1158/1538-7445.AM2017-2487
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2017
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    American Association for Cancer Research (AACR) ; 2017
    In:  Cancer Research Vol. 77, No. 4_Supplement ( 2017-02-15), p. P4-15-03-P4-15-03
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 77, No. 4_Supplement ( 2017-02-15), p. P4-15-03-P4-15-03
    Abstract: Introduction: Little is understood about the early molecular drivers of the triple negative breast cancer making identification of women at risk and development of targeted therapy for prevention a significant challenge. Methods: Here, by deep sequencing of TNBC- cell line based breast cancer progression system we have identified miRNA-29c and its functional gene targets to be potentially involved in the normal to preneoplastic transition during TNBC progression. We have used cell line based functional assays that are relevant in early tumorigenesis such cell proliferation (ki67), and colony formation assay to study the growth inhibitory potential of these miRNA and their gene targets. To identify direct gene targets of miRNA-29c, we cloned the 3'untranslated region containing miRNA-29c binding sites from predicted gene targets in a luciferase reporter vector, pmiRGLO and studied the potential of miRNA-29c overexpression on the repression of luciferase reporter activity indicating their direct gene regulation. Results: Our deep sequencing results and their further validation by QPCR revealed miRNA-29c to be lost during the TNBC progression, and its forced expression to inhibit cell proliferation and colony formation of preneoplastic (MCF10AT1) and ductal carcinoma in situ (MCF10DCIS) cells. We found miRNA-29c to directly bind in 3'UTR of TGIF2, CREB5, AKT3 and CDK6 and regulate their expression as shown by our luciferase assays. We also found miRNA-29c binding to 3'UTR of these gene targets to be functionally relevant as TGIF2, CREB5 and AKT3 were able to rescue the inhibition in cell proliferation and colony formation assay caused by loss of miRNA-29c in preneoplastic cells. Further confirming the relevance of these miRNA-29c gene targets and pathways in TNBC tumorigenesis, inhibition of PI3K, which is upstream of AKT3, inhibits cell proliferation in MCF10AT1 and DCIS cells. We also examined the regulation of tumor suppressor miRNA-29c to study the mechanisms responsible for its loss during breast cancer development. We found c-myc and EZH2 driven epigenetic mechanism as well as DNA methylation in part to cause the loss of miRNA-29c during TNBC progression. Consistently, we found a pan HDAC inhibitor and a DNA methylation inhibitor to relieve the suppression of miRNA-29c. Conclusions: Together, these results indicate that loss of miRNA-29c plays a central role in preneoplastic development of breast cancer and efforts directed at inhibition of its target pathways or rescue of miRNA-29c itself may provide novel opportunities for prevention of TNBC.Introduction: Little is understood about the early molecular drivers of the triple negative breast cancer making identification of women at risk and development of targeted therapy for prevention a significant challenge. Methods: Here, by deep sequencing of TNBC- cell line based breast cancer progression system we have identified miRNA-29c and its functional gene targets to be potentially involved in the normal to preneoplastic transition during TNBC progression. We have used cell line based functional assays that are relevant in early tumorigenesis such cell proliferation (ki67), and colony formation assay to study the growth inhibitory potential of these miRNA and their gene targets. To identify direct gene targets of miRNA-29c, we cloned the 3'untranslated region containing miRNA-29c binding sites from predicted gene targets in a luciferase reporter vector, pmiRGLO and studied the potential of miRNA-29c overexpression on the repression of luciferase reporter activity indicating their direct gene regulation. Results: Our deep sequencing results and their further validation by QPCR revealed miRNA-29c to be lost during the TNBC progression, and its forced expression to inhibit cell proliferation and colony formation of preneoplastic (MCF10AT1) and ductal carcinoma in situ (MCF10DCIS) cells. We found miRNA-29c to directly bind in 3'UTR of TGIF2, CREB5, AKT3 and CDK6 and regulate their expression as shown by our luciferase assays. We also found miRNA-29c binding to 3'UTR of these gene targets to be functionally relevant as TGIF2, CREB5 and AKT3 were able to rescue the inhibition in cell proliferation and colony formation assay caused by loss of miRNA-29c in preneoplastic cells. Further confirming the relevance of these miRNA-29c gene targets and pathways in TNBC tumorigenesis, inhibition of PI3K, which is upstream of AKT3, inhibits cell proliferation in MCF10AT1 and DCIS cells. We also examined the regulation of tumor suppressor miRNA-29c to study the mechanisms responsible for its loss during breast cancer development. We found c-myc and EZH2 driven epigenetic mechanism as well as DNA methylation in part to cause the loss of miRNA-29c during TNBC progression. Consistently, we found a pan HDAC inhibitor and a DNA methylation inhibitor to relieve the suppression of miRNA-29c. Conclusions: Together, these results indicate that loss of miRNA-29c plays a central role in preneoplastic development of breast cancer and efforts directed at inhibition of its target pathways or rescue of miRNA-29c itself may provide novel opportunities for prevention of TNBC. Citation Format: Bhardwaj A, Tachibana K, Ganesan N, Rajapakshe K, Singh H, Gunaratne P, Coarfa C, Bedrosian I. Regulation of miRNA-29c and its gene targets in preneoplastic progression of triple negative breast cancer [abstract]. In: Proceedings of the 2016 San Antonio Breast Cancer Symposium; 2016 Dec 6-10; San Antonio, TX. Philadelphia (PA): AACR; Cancer Res 2017;77(4 Suppl):Abstract nr P4-15-03.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2017
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    American Association for Cancer Research (AACR) ; 2017
    In:  Cancer Research Vol. 77, No. 13_Supplement ( 2017-07-01), p. 4129-4129
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 77, No. 13_Supplement ( 2017-07-01), p. 4129-4129
    Abstract: BRAF mutations are driver events in a number of cancers including thyroid cancer and melanoma. The most common, BRAF V600E, alters normal BRAF protein activity in the mitogen-activated protein kinase (MAPK) pathway by constitutively activating BRAF and inducing proliferative signaling and tumor growth. Small molecule tyrosine kinase inhibitors targeting tumors with the V600E mutation have been evaluated in clinical trials and are now approved for melanoma. While BRAF missense mutations have been extensively characterized for oncogenic potential and actionability in genomically-guided therapy, BRAF gene fusions have been underappreciated for not only their functional role in cancer but also in differential drug response. More recently, data suggest that alternative approaches may be needed for treatment of patients with BRAF fusion-containing tumors. We have identified two novel BRAF fusions in tumors from patients with papillary thyroid cancer and melanoma. Both fusions result in an in-frame fusion of a novel gene partner at the 5’ end of the fusion, an intact BRAF kinase domain at the 3’ end, and loss of the BRAF auto-inhibitory domain. We hypothesized that these novel BRAF fusions act as oncogenic drivers, and the mechanism of BRAF activation differs from that caused by V600E mutations and may be fusion partner-specific. These fusions have been engineered in the laboratory and tested for tumorigenic potential and functional activity. BRAF fusion expression in non-transformed cells induces colony formation similar to the V600E mutation indicating tumorigenic potential. These BRAF fusions also constitutively activate the MAPK pathway in the absence of stimulation as demonstrated by phosphorylated ERK and MEK proteins. Additionally, BRAF fusion-expressing cells form tumors in vivo similarly to the BRAF V600E-expressing cells. These tumors are highly proliferative as demonstrated by strong Ki67 immunohistochemical staining and display MAPK pathway activation as evidenced by phosphorylated ERK. BRAF fusion-expressing cells have differential sensitivity to MAPK pathway inhibitors compared to cells with the V600E mutation as measured by reduced MAPK signaling. Inhibition of the MAPK pathway is relevant in targeting BRAF fusion-containing cells but may not follow the same paradigm as point mutations. Collectively, our data suggest that BRAF fusions are functional and represent novel therapeutic targets, but may need an alternative approach as compared to tumors with BRAF missense mutations. Citation Format: Sonia C. Dolfi, Ann Silk, Bhavna Paratala, Whitney Petrosky, Srilatha Simhadri, Atul Kulkarni, Shridar Ganesan, Kim M. Hirshfield. Novel oncogenic BRAF fusions and impact on targeted therapies [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2017; 2017 Apr 1-5; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2017;77(13 Suppl):Abstract nr 4129. doi:10.1158/1538-7445.AM2017-4129
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2017
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...