GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • MDPI AG  (2)
  • Ye, Ying  (2)
  • English  (2)
Material
Publisher
  • MDPI AG  (2)
Language
  • English  (2)
Years
  • 1
    In: Molecules, MDPI AG, Vol. 26, No. 23 ( 2021-11-26), p. 7158-
    Abstract: Both UV and blue light have been reported to regulate the biosynthesis of flavonoids in tea plants; however, the respective contributions of the corresponding regions of sunlight are unclear. Additionally, different tea cultivars may respond differently to altered light conditions. We investigated the responses of different cultivars (‘Longjing 43’, ‘Zhongming 192’, ‘Wanghai 1’, ‘Jingning 1’ and ‘Zhonghuang 2’) to the shade treatments (black and colored nets) regarding the biosynthesis of flavonoids. For all cultivars, flavonol glycosides showed higher sensitivity to light conditions compared with catechins. The levels of total flavonol glycosides in the young shoots of different tea cultivars decreased with the shade percentages of polyethylene nets increasing from 70% to 95%. Myricetin glycosides and quercetin glycosides were more sensitive to light conditions than kaempferol glycosides. The principal component analysis (PCA) result indicated that shade treatment greatly impacted the profiles of flavonoids in different tea samples based on the cultivar characteristics. UV is the crucial region of sunlight enhancing flavonol glycoside biosynthesis in tea shoots, which is also slight impacted by light quality according to the results of the weighted correlation network analysis (WGCNA). This study clarified the contributions of different wavelength regions of sunlight in a field experiment, providing a potential direction for slightly bitter and astringent tea cultivar breeding and instructive guidance for practical field production of premium teas based on light regimes.
    Type of Medium: Online Resource
    ISSN: 1420-3049
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2008644-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Plants, MDPI AG, Vol. 11, No. 20 ( 2022-10-18), p. 2751-
    Abstract: Tea plant is susceptible to low temperature, while the cold injury recovery mechanisms of tea leaves are still unclear. Windbreak has an effective and gradient range of protecting tea plants. Tea plants with increasing cold damage degree have varying recovery status accordingly, which are the ideal objects for investigating the cold injury recovery mechanisms of tea leaves. Here, we investigated the transcriptome and phytohormone profiles of tea leaves with different cold injury degrees in recovery (adjacent to the windbreak), and the levels of chlorophylls, malondialdehyde, major phytohormones as well as the activities of peroxidase (POD) and superoxide dismutase (SOD) were also measured. The results showed the content of total chlorophylls and the activity of POD in mature tea leaves gradually decreased with the distance to windbreak, while SOD showed the opposite. The major phytohormones were highly accumulated in the moderately cold-injured tea leaves. The biosynthesis of abscisic acid (ABA) was enhanced in the moderate cold damaged tea leaves, suggesting that ABA plays an important role in the cold response and resistance of tea plants. The transcriptomic result showed that the samples in different rows were well discriminated, and the pathways of plant-pathogen interaction and flavonoid biosynthesis were enriched based on KEGG analysis. WRKY, GRAS and NAC were the top classes of transcription factors differentially expressed in the different cold-injured tea leaves. Thus, windbreak is effective to protect adjacent tea plants from cold wave, and phytohormones importantly participate in the cold injury recovery of tea leaves.
    Type of Medium: Online Resource
    ISSN: 2223-7747
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2704341-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...